- BrainTools - https://www.braintools.ru -

Подробная карта OpenSource инструментов для создания AI агентов

Всем привет! Меня зовут Александр, я COO в SaaS-платформе для аналитики данных. Последний год активно изучаю AI-решения в кросс-функциональные процессы. В своих переводах делюсь материалами, которые помогают:

  • Продуктовым менеджерам — интегрировать AI без перегрузки команд;

  • Разработчикам — выбирать инструменты под конкретные бизнес-задачи;

  • Специалистам по данным — избегать ошибок в production-развертывании.

Сегодняшний перевод The Open-Source Toolkit for Building AI Agents [1] — гид по open-сервисам для создания автономных AI-агентов. Вы узнаете, как собрать стек под свои нужды, даже если у вас нет ML-инженеров в штате. Автор провел селективный анализ open-source экосистемы, отбросив маркетинговый шум и сосредоточившись на реально работающих решениях.


В прошлом посте я исследовал, как интернет трансформируется для агент-ориентированного будущего — от оптимизации сайтов для взаимодействия с ИИ через «агент-отзывчивый дизайн» до появления AEO (Agent Engine Optimization) как нового SEO. Мы увидели, как технологические гиганты вроде Google, Apple, OpenAI и Anthropic соревнуются в определении следующего этапа цифровой трансформации, а Gartner прогнозирует, что к 2028 году 33% корпоративных приложений будут включать агентный ИИ (Agent-Responsive Design: Rethinking the web for an agentic future [2]).

В этой статье я представлю обзор open-source экосистемы для разработки ИИ-агентов. Хотя существуют многочисленные маркет-мапы агентов, большинство из них ориентированы на венчурных инвесторов, а не на разработчиков. Давайте сосредоточимся на практических инструментах для создания рабочих агентов уже сегодня.

Какие решения используют разработчики для создания голосовых агентов? Какая open-модель лидирует в обработке документов? Новые пакеты появляются почти ежедневно — я фокусируюсь исключительно на самых эффективных инструментах по моему опыту [3]. Этот список сознательно селективен, а не всеобъемлющ.

Все указанные инструменты имеют разрешительную open-source лицензию и доступны для коммерческого использования.

Охваченные категории:
→ Фреймворки для создания агентов
→ Работа с компьютером и браузером
→ Голосовые интерфейсы
→ Понимание документов
Память [4] агентов
→ Тестирование и оценка
→ Мониторинг и наблюдаемость
→ Симуляция окружения
→ Вертикальные агенты

Изображение категорий агентов

Категории open-source инструментов для ИИ-агентов

Frameworks for Building and Orchestrating Agents

Создание AI-агентов требует мощных фреймворков, способных обрабатывать сложные рабочие процессы, управлять памятью и интегрировать инструменты. Эти базовые фреймворки служат основой для создания агентов, которые могут понимать, планировать и автономно выполнять задачи.

  • CrewAI [5] — фреймворк для оркестрации ролевых автономных AI-агентов

  • Phidata [6] — создание AI-ассистентов с памятью, знаниями и инструментами

  • Camel [7] — построение кастомизированных мультиагентных систем для генерации данных, выполнения задач или симуляции реальных взаимодействий

  • AutoGPT [8] — создание, развертывание и управление непрерывными AI-агентами для автоматизации сложных процессов

  • AutoGen [9] — разработка LLM-приложений с использованием нескольких взаимодействующих агентов

  • SuperAGI [10] — быстрое и надежное создание, управление и запуск автономных AI-агентов

  • Superagent [11] — открытый фреймворк для построения AI-ассистентов

  • LangChain [12] и LlamaIndex [13] — классические инструменты для реализации AI Agents через композицию элементов

CrewAI interface

CrewAI поддерживает запуск кастомизированных агентов с определёнными ролями, целями и инструментами

Computer and Browser Use

Для того, чтобы AI-агенты стали по-настоящему полезными, они должны взаимодействовать с компьютерами и браузерами как люди. Эти инструменты позволяют агентам навигировать по сайтам, управлять приложениями и выполнять команды программно, создавая мост между логикой [14] ИИ и реальными действиями.

  • Open Interpreter [15] — преобразует команды на естественном языке в исполняемый код на локальной машине

  • Self-Operating Computer [16] — позволяет мультимодальным моделям управлять компьютером

  • Agent-S [17] — открытый фреймворк для человекообразного взаимодействия с компьютерами

  • LaVague [18] — создание веб-агентов, выполняющих действия на сайтах с использованием LLM как движка логики

  • Playwright [19] — фреймворк для автоматизации и тестирования веб-приложений

  • Puppeteer [20] — JavaScript-библиотека для высокоуровневого управления Chrome/Firefox

Self-Operating Computer демонстрирует генерацию стихотворения с сохранением в Google Docs

Self-Operating Computer демонстрирует генерацию стихотворения с сохранением в Google Docs

Голосовые интерфейсы

Голосовые интерфейсы представляют собой наиболее естественный способ взаимодействия человека с AI-агентами. Эти инструменты позволяют создавать агентов, которые понимают устную речь, сохраняют контекст в диалогах и отвечают естественно звучащей речью, делая взаимодействие с AI более доступным и интуитивно понятным.

Speech2speech

  • Ultravox [21] — модель для речевого взаимодействия в реальном времени, на данный момент превосходит Moshi

  • Moshi [22] — система речевого взаимодействия в реальном времени

  • Pipecat [23] — фреймворк для голосовых и мультимодальных AI, поддерживающий speech2text, text2speech, видео и другие функции

Speech2text

  • Whisper [24] — speech2text модель от OpenAI

  • Stable-ts [25] — облегчённая обёртка для Whisper с временными метками

  • Speaker diarization 3.1 [26] — флагманская модель pyannote для детекции говорящих

Text2speech
Единственной достойной открытой моделью в этой категории я считаю ChatTTS, которая подходит для продакшена. В остальных случаях я предпочитаю использовать ElevenLabs или Cartesia.

Дополнительные инструменты

  • Vocode [27] — набор инструментов для создания голосовых LLM-агентов

  • Voice Lab [28] — комплексная система тестирования и оценки голосовых агентов с поддержкой различных языковых моделей, промптов и персонажей

Document Understanding

Современным AI-агентам необходимо обрабатывать и понимать документы в различных форматах — от PDF до изображений с текстом. Эти инструменты предоставляют критически важную возможность извлекать, анализировать и действовать на основе информации из неструктурированных документов, позволяя агентам работать с реальными бизнес-процессами.

  • Qwen2-VL [29] — мультимодальная модель от Alibaba, превосходящая GPT-4o и Claude 3.5 Sonnet в задачах обработки документов

  • DocOwl2 [30] — эффективная мультимодальная LLM для понимания документов без использования OCR

Демонстрация работы Qwen2-VL

Демонстрация работы Qwen2-VL

Qwen2 демонстрирует высокую эффективность в понимании документов и графиков при использовании коммерчески разрешённой лицензии

Память
Без памяти AI-агенты ограничиваются одношаговыми взаимодействиями. Эти инструменты позволяют агентам сохранять контекст длинных диалогов, запоминать предпочтения пользователей и учиться на прошлых взаимодействиях, превращая их в персональных ассистентов вместо простых ответчиков на запросы.

  • Mem0 [31] — обеспечивает эффективный самообучающийся слой памяти для LLM, позволяя создавать персонализированные AI-интерфейсы

  • Letta (ранее MemGPT) [32] — создание LLM-агентов с долгосрочной памятью и кастомными инструментами

  • LangChain [12] — предлагает компоненты памяти для управления историей диалогов и контекстом

Stateful agents with Letta

Агенты с сохранением состояния через Letta

Тестирование и оценка

По мере усложнения AI-агентов надёжное тестирование становится критически важным. Эти инструменты помогают разработчикам оценивать производительность агентов, выявлять точки сбоев и обеспечивать стабильность работы в различных сценариях и окружениях.

  • Voice Lab [28] — комплексный фреймворк для тестирования и оценки голосовых агентов

  • AgentOps [33] — инструменты для мониторинга и бенчмаркинга производительности агентов

  • AgentBench [34] — набор тестов для оценки LLM как агентов в различных окружениях (веб, Minecraft, визуальный дизайн и др.)

Testing voice agents

Тестируйте и улучшайте голосовых агентов с помощью Voice Lab

Мониторинг и наблюдаемость

Понимание того, как AI-агенты работают в продакшене, критически важно для поддержания их надежности и оптимизации затрат. Эти инструменты предоставляют аналитику о поведении [35] агентов, использовании ресурсов и метриках производительности, необходимых для масштабирования.

  • openllmetry [36] – инструмент сквозной наблюдаемости на базе OpenTelemetry для LLM-приложений

  • AgentOps [33] – мониторинг агентов, трекинг затрат на LLM, бенчмаркинг и другие функции

Отладка агентов с помощью AgentOps

Отладка агентов с помощью AgentOps

Симуляция

Прежде чем развертывать агентов в реальных сценариях, критически важно тестировать их в контролируемых средах. Эти инструменты симуляции позволяют разработчикам проверять поведение [37] агентов, тестировать крайние случаи и совершенствовать способности к принятию решений в безопасных, воспроизводимых условиях.

  • AgentVerse [38] — позволяет развертывать множественных агентов на основе LLM в различных приложениях, включая симуляции

  • Tau-Bench [39] — бенчмарк и тестовый код для взаимодействий агент-пользователь в реальных доменах, таких как розничная торговля и авиалинии

  • ChatArena [40] — среды для многопользовательских языковых игр, предназначенные для исследований автономных LLM-агентов

  • AI Town [41] — Виртуальный город, где ИИ-персонажи живут, общаются и взаимодействуют

  • Generative Agents [42] — Интерактивные симулякры человеческого поведения от Стэнфорда

Симуляция агентных сред с помощью AgentVerse

Симуляция агентных сред с помощью AgentVerse

Вертикальные агенты

Существуют десятки открытых вертикальных агентов, поэтому приведу лишь несколько избранных, с которыми я экспериментировал и нашёл наиболее полезными:

  • OpenHands [43] (Разработка) — платформа для агентов разработки ПО на базе ИИ

  • aider [44] (Программирование) — парное программирование в вашем терминале

  • GPT Engineer [45] (Low code) — создание приложений с использованием естественного языка. Укажите, что хотите построить, и ИИ уточнит детали перед реализацией

  • screenshot-to-code [46] — преобразование скриншотов в рабочий веб-сайт с использованием HTML/Tailwind/React/Vue

  • GPT Researcher [47] (Исследования) — автономный агент для комплексного анализа заданной темы

  • Vanna [48] (SQL) — общайтесь с вашей SQL-базой данных

Пример работы Aider

Aider поддерживает парное программирование в терминале

Взгляд в Будущее

Хотя этот материал сосредоточен на open-source решениях с пермиссивными лицензиями, я планирую выпустить ещё один исчерпывающий гид для инженеров, разрабатывающих голосовых агентов. Это руководство будет включать как open-source, так и коммерческие инструменты — от Realtime API OpenAI (speech2speech) до ElevenLabs (text2speech), с детальным сравнением их возможностей, ценовых моделей и оптимальных сценариев использования.

Следите за новыми глубокими погружениями в рамках серии материалов об AI-агентах.


Выше взгляд в будущее от автора инструкции 😅
От себя добавлю, что планирую продолжить выкладывать полезные материалы и переводы, которые подмечаю по теме AI, развития продукта и не только.

Автор: Kual

Источник [49]


Сайт-источник BrainTools: https://www.braintools.ru

Путь до страницы источника: https://www.braintools.ru/article/13114

URLs in this post:

[1] The Open-Source Toolkit for Building AI Agents: https://substack.com/inbox/post/152246141

[2] Agent-Responsive Design: Rethinking the web for an agentic future: https://www.aitidbits.ai/p/agent-responsive-design

[3] опыту: http://www.braintools.ru/article/6952

[4] Память: http://www.braintools.ru/article/4140

[5] CrewAI: https://github.com/crewAIInc/crewAI

[6] Phidata: https://github.com/phidatahq/phidata

[7] Camel: https://github.com/camel-ai/camel

[8] AutoGPT: https://github.com/Significant-Gravitas/AutoGPT

[9] AutoGen: https://github.com/microsoft/autogen

[10] SuperAGI: https://github.com/TransformerOptimus/SuperAGI

[11] Superagent: https://github.com/superagent-ai/superagent

[12] LangChain: https://github.com/langchain-ai/langchain

[13] LlamaIndex: https://github.com/run-llama/llama_index

[14] логикой: http://www.braintools.ru/article/7640

[15] Open Interpreter: https://github.com/OpenInterpreter/open-interpreter

[16] Self-Operating Computer: https://github.com/OthersideAI/self-operating-computer

[17] Agent-S: https://github.com/simular-ai/Agent-S

[18] LaVague: https://github.com/lavague-ai/LaVague

[19] Playwright: https://github.com/microsoft/playwright

[20] Puppeteer: https://pptr.dev/

[21] Ultravox: https://github.com/fixie-ai/ultravox

[22] Moshi: https://github.com/kyutai-labs/moshi

[23] Pipecat: https://github.com/pipecat-ai/pipecat

[24] Whisper: https://github.com/openai/whisper

[25] Stable-ts: https://github.com/jianfch/stable-ts

[26] Speaker diarization 3.1: https://huggingface.co/pyannote/speaker-diarization-3.1

[27] Vocode: https://github.com/vocodedev/vocode-core

[28] Voice Lab: https://github.com/saharmor/voice-lab

[29] Qwen2-VL: https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d

[30] DocOwl2: https://huggingface.co/mPLUG/DocOwl2

[31] Mem0: https://github.com/mem0ai/mem0

[32] Letta (ранее MemGPT): https://github.com/letta-ai/letta

[33] AgentOps: https://github.com/AgentOps-AI/agentops

[34] AgentBench: https://github.com/THUDM/AgentBench

[35] поведении: http://www.braintools.ru/article/9372

[36] openllmetry: https://github.com/traceloop/openllmetry

[37] поведение: http://www.braintools.ru/article/5593

[38] AgentVerse: https://github.com/OpenBMB/AgentVerse

[39] Tau-Bench: https://github.com/sierra-research/tau-bench

[40] ChatArena: https://github.com/Farama-Foundation/chatarena

[41] AI Town: https://github.com/a16z-infra/ai-town

[42] Generative Agents: https://github.com/joonspk-research/generative_agents

[43] OpenHands: https://github.com/All-Hands-AI/OpenHands

[44] aider: https://github.com/Aider-AI/aider

[45] GPT Engineer: https://github.com/gpt-engineer-org/gpt-engineer

[46] screenshot-to-code: https://github.com/abi/screenshot-to-code

[47] GPT Researcher: https://github.com/assafelovic/gpt-researcher

[48] Vanna: https://github.com/vanna-ai/vanna

[49] Источник: https://habr.com/ru/articles/890774/?utm_source=habrahabr&utm_medium=rss&utm_campaign=890774

www.BrainTools.ru

Rambler's Top100