- BrainTools - https://www.braintools.ru -

Книги, видео и курсы для изучения ML

Книги, видео и курсы для изучения ML - 1

Собрали бесплатные ресурсы, которые позволят погрузиться в работу с искусственным интеллектом [1] — как для новичков, так и для тех, кто уже работает с ML и хочет углубить знания.

Сборники материалов

Сборник учебных материалов от TensorFlow

Источник.

Формат: курсы, книги, туториалы.

Язык: английский (есть автоперевод на русский).

Источник: сборник доступен по ссылке [3].

TensorFlow [4] — это бесплатная библиотека с открытым исходным кодом от Google для машинного обучения [5] (ML) и искусственного интеллекта (AI). На этом ресурсе собрано очень много обучающих материалов — и теоретических, и практических. 

Начать можно с одного из курсов. Для старта подойдут Основы машинного обучения [6] и Основы разработки на JavaScript [7], а тех, кто уже разбирается в теме, может заинтересовать Теоретическое и продвинутое машинное обучение [8]. Каждый курс состоит из видеоуроков и книг по теме. Обратите внимание [9], что хоть у сайта и есть адаптация на русский, все учебные материалы здесь только на английском языке. Кроме того, на сайте вы найдете уроки по линейной алгебре, deep learning и разработке. Некоторые из них включают практические задания.

Роадмап для самостоятельного изучения ML и AI

Формат: курсы, книги, туториалы.

Язык: английский.

Источник: роадмап доступен по ссылке [10].

Еще одна коллекция источников, которая постоянно пополняется. Кроме стандартной базы про Python и Deep Learning здесь также есть материалы по применению ML в узких нишах — например, в обработке естественного языка или в сферах, связанных с искусством. 

Очень удобный ресурс, чтобы составить себе полноценный учебный план, охватывающий разные аспекты работы с ML. Например, можно выбрать базовый курс по Python, гайд по Generative AI и мануал по Data Science, а для самопроверки пройти тест от Стэнфорда или Университета Торонто. Легко скомпоновать разные ресурсы, чтобы составить свой путь от новичка до практика. 

Segun Akinyemi, обзор бесплатных курсов и туториалов

Источник.

Формат: статьи и видеоуроки.

Язык: английский.

Источник: сайт доступен по ссылке [11].

Здесь собраны редкие туториалы, статьи и проекты, которые часто не замечают крупные агрегаторы. С их помощью можно узнать, например, как обучать модели через Excel или как работать с ИИ-агентами (очень хайповая технология, о которой пока не так много обучающих материалов).

Если вы настроены серьезно и хотите составить настоящий учебный план для погружения в ML, рекомендуем посмотреть эти статьи:

Курсы

Elements of AI

Источник.

Формат: курс.

Язык: английский.

Источник: доступен по ссылке [14].

На этом ресурсе есть курс из двух частей — для новичков и для тех, кто уже разбирается в AI. В первой части речь идет о том, как устроены нейросети и машинное обучение, а также как эти технологии применяются в жизни. Специальных знаний по математике [15] и программированию для изучения не нужно. 

Вторая часть более углубленная. Она дает представление об алгоритмах, которые лежат в основе ИИ. Для изучения потребуются базовые знания Python.

Введение в Data Science и машинное обучение

Книги, видео и курсы для изучения ML - 5

Формат: курс.

Язык: русский.

Источник: курс доступен по ссылке [16].

Хороший курс для тех, кто только начинает погружаться в тему. Простой, без академического снобизма и громоздких терминов.

Лектор Анатолий Карпов знакомит с самыми популярными инструментами ML для бизнеса, но с объяснением технических деталей. Курс помогает структурировать знания и посмотреть на знакомые технологии под другим углом.

Курс Practical Deep Learning for Coders

Источник.

Формат: курс.

Язык: английский.

Источник: курс доступен по ссылке [18].

Бесплатный курс, предназначенный для людей с некоторым опытом [19] программирования, которые хотят научиться применять Deep Learning и машинное обучение для решения практических задач. Минимум воды, много кода — логичное продолжение после изучения базовых курсов. 

Курс состоит из девяти уроков, каждый из них длится около 90 минут. В рамках этих уроков вы научитесь создавать и развертывать модели для компьютерного зрения [20], обработки естественного языка и рекомендательных систем, а также изучите некоторые популярные библиотеки.

Выстраиваем работу с ML

Книги, видео и курсы для изучения ML - 7

Формат: курс (подборка материалов).

Язык: русский.

Источник: курс доступен по ссылке [21].

Мы с коллегами составили курс «Выстраиваем работу с ML» в Академии Selectel. В нем собрали полезные материалы для компаний, которые внедряют машинное обучение в рабочие процессы. 

В нашем курсе вы найдете материалы по MLOps — дисциплине, направленной на унификацию процессов разработки и развертывания ML-систем. Еще в подборке вы найдете материалы о том, как работать с ML-моделями и платформами обработки данных.

Книги, видео и курсы для изучения ML - 8

Заберите максимум новогодних подарков с 15 по 23 декабря🎁

Один день — один сюрприз: адвент-календарь со скидками до 100% на IT-инфраструктуру.

Подробнее → [22]

Видео

Канал StatQuest with Josh Starmer

Источник.

Формат: видео.

Язык: английский.

Источник: ссылка на канал [24].

Автор очень доступно объясняет математические модели и методы — например, как работают случайные леса, логистическая регрессия, статистические тесты и другое. Особенно рекомендуем видео [25] о том, что там BAM.

Книги

А.Г. Курош, Лекции по общей алгебре

Книги, видео и курсы для изучения ML - 10

Формат: книга.

Язык: русский.

Источник: книга доступна по ссылке [26].

Это действительно большой труд, который стоит вдумчиво читать целиком только посвященным, однако как минимум две главы заслуживают пристального внимания. В первой автор разбирает основные понятия дискретной математики — отображения, отношения, их свойства и другие.

Во второй главе автор вводит различные алгебраические структуры типа группоида, полугруппы, группы, кольца, тела, поля и другого. Текст изложен в строгом стиле, но понятия вводятся последовательно. Впрочем, если стиль изложения покажется чересчур сложным, можно также почитать введение в абстрактную алгебру венгерского математика Эрвина Фрида.

Л.И. Головина, «Линейная алгебра и некоторые ее приложения»

Книги, видео и курсы для изучения ML - 11

Формат: книга.

Язык: русский.

Источник: книга доступна по ссылке [27].

Линейная алгебра — особенно важный раздел математики с точки зрения Data Science и машинного обучения. Как минимум все операции с нейросетями — матричные.

Проблема в том, что сама по себе линейная алгебра имеет высокий порог вхождения. Чтобы вам было проще его преодолеть, рекомендуем к прочтению эту книгу. 

В самом начале автор очень доступно объясняет смысл определителя. Вторая глава уже требует понимания идеи алгебраической структуры — в частности, поля. Конечно, книга довольно гладко вводит его определение, что ее только красит. В следующих главах идет обсуждение линейной зависимости, комбинации, базиса, размерности и других тем.

М.Ю. Пантаев, «Матанализ с человеческим лицом, или как выжить после предельного перехода»

Книги, видео и курсы для изучения ML - 12

Формат: книга.

Язык: русский.

Источник: книга доступна по ссылке [28].

Еще одна крутая и необычная книга по математическому анализу. Первая глава подробно рассказывает о возникновении задач, в которых появляется необходимость работать с чем-то, похожим на интегрирование (метод исчерпывания), с чем-то, что так или иначе затрагивает бесконечность.

Вторая глава начинается с отличной цитаты: «История математики обладает одним неисправимым недостатком: хронологический порядок событий не соответствует порядку логическому, естественному». Верное замечание.

Эта глава в целом рассказывает о том, что отцам-основателем матана не чужды шалости в стиле «когда надо — h равно 0, а когда не надо — не равно». И что путь формирования того строгого аппарата, который поставлен на вооружение математического анализа, далеко не всегда был таким.

Автор обсуждает с читателем парадоксы [29], доказательства, а также тот факт, что не все в этой жизни можно определить. Поэтому книга «Матанализ с человеческим лицом» далеко не только про «матан».

В комментариях поделитесь своими источниками знаний, которые будут полезны читателям.

Автор: SofiaShpak

Источник [30]


Сайт-источник BrainTools: https://www.braintools.ru

Путь до страницы источника: https://www.braintools.ru/article/23468

URLs in this post:

[1] интеллектом: http://www.braintools.ru/article/7605

[2] Источник: https://www.tensorflow.org/resources/learn-ml?hl=ru

[3] по ссылке: https://www.tensorflow.org/resources/learn-ml

[4] TensorFlow: https://www.google.com/search?client=safari&rls=en&q=TensorFlow&ie=UTF-8&oe=UTF-8&ved=2ahUKEwiDx9nf08GRAxVtLxAIHThtFhcQgK4QegYIAQgAEAM

[5] обучения: http://www.braintools.ru/article/5125

[6] Основы машинного обучения: https://www.tensorflow.org/resources/learn-ml/basics-of-machine-learning?hl=ru

[7] Основы разработки на JavaScript: https://www.tensorflow.org/resources/learn-ml/basics-of-tensorflow-for-js-development?hl=ru

[8] Теоретическое и продвинутое машинное обучение: https://www.tensorflow.org/resources/learn-ml/theoretical-and-advanced-machine-learning?hl=ru

[9] внимание: http://www.braintools.ru/article/7595

[10] по ссылке: https://www.promptzone.com/ai-resources

[11] Источник: https://segunakinyemi.com/blog/ai-learning-resources/

[12] Полезные материалы по Data Science и машинному обучению, которые помогут пройти сквозь джунгли из терминов: https://habr.com/ru/companies/selectel/articles/723854/

[13] От логики и риторики до теории множеств и матанализа. Полезные материалы по Data Science и машинному обучению: https://habr.com/ru/companies/selectel/articles/762098/

[14] Источник: https://www.elementsofai.com/

[15] математике: http://www.braintools.ru/article/7620

[16] по ссылке: https://stepik.org/course/4852/promo#toc

[17] Источник: https://course.fast.ai

[18] по ссылке: https://course.fast.ai/

[19] опытом: http://www.braintools.ru/article/6952

[20] зрения: http://www.braintools.ru/article/6238

[21] по ссылке: https://selectel.ru/blog/courses/how-to-work-with-ml-systems/

[22] Подробнее →: https://promo.selectel.ru/advent_selectel/?utm_source=habr.com&utm_medium=referral&utm_campaign=advent_article_study_ml_191225_banner_105_03_ord

[23] Источник: https://www.youtube.com/@statquest/featured

[24] ссылка на канал: https://www.youtube.com/@statquest

[25] видео: https://www.youtube.com/watch?v=i4iUvjsGCMc

[26] по ссылке: https://djvu.online/file/Yb708CAssna05?ysclid=lk869tw5w6390539074

[27] по ссылке: https://drive.google.com/file/d/1sASjjSb_tAsk0ZlkWQigVfAeiPVy3qk6/view

[28] по ссылке: https://www.at.alleng.org/d/math-stud/math-st899.htm

[29] парадоксы: http://www.braintools.ru/article/8221

[30] Источник: https://habr.com/ru/companies/selectel/articles/978482/?utm_campaign=978482&utm_source=habrahabr&utm_medium=rss

www.BrainTools.ru

Rambler's Top100