- BrainTools - https://www.braintools.ru -
К началу 2026 года стало заметно: формат “чат с LLM” перестал закрывать реальные инженерные задачи.
Да, модель может подсказать решение. Но дальше начинается привычная цепочка: открыть терминал, написать код, проверить, подправить, запустить, отследить результат.
Появляется закономерный вопрос: если модель знает, какие шаги нужны, почему она не может их выполнить сама?
Отсюда и растущий интерес [1] к автономным агентам – системам, где LLM используется не как чат, а как управляющий слой поверх реальной среды исполнения.
Clawdbot – один из таких проектов.
И он open-source!
Его разработал Peter Steinberger – опытный разработчик и основатель компании PSPDFKit – SDK для работы с PDF-файлами.
Чат-бот – это stateless interaction (взаимодействие без сохранения состояния):
запрос → ответ;
короткая история диалога;
ноль побочных эффектов.
Автономный агент – это long-running process (длительный процесс):
постоянный цикл работы;
сохранённое состояние;
доступ к инструментам;
возможность реагировать [2] на события, а не только на команды.
Фактически это сервис, внутри которого LLM выполняет роль планировщика и контроллера.
Clawdbot собран из простых, хорошо знакомых компонентов.
Интеграционный слой
Webhook’и, адаптеры, нормализация входящих сообщений.
Никакой логики.
Просто доставка событий туда и обратно.
Оркестратор поверх LLM (внешняя LLM на ваш выбор, с вашими доступами)
Задачи агента:
разобрать входную цель;
декомпозировать её на шаги;
выбрать инструменты;
контролировать порядок и завершённость выполнения.
Важно: агент не исполняет код напрямую. Он управляет тем, какой код должен быть выполнен и когда.
Обычные хранилища:
short-term контекст;
long-term данные в векторной БД;
структурированные файлы с состоянием и настройками.
Это не “память [3] модели”, а данные, которыми агент умеет пользоваться.
Исполняемый код.
Скрипты и функции, которые:
работают с файловой системой;
запускают команды;
управляют браузером;
вызывают API.
Итого в общем виде схема примерно такая: “событие → агент → skill → результат”
Ключевое отличие агента от автоматизации на cron’ах – инициатива.
Агент работает постоянно и может реагировать на события:
появление файла;
изменение состояния сервиса;
наступление внешнего условия;
приближение дедлайна.
Он не просто шлёт алерт. Он может сам запустить цепочку действий и подключить человека только на этапе подтверждения. Это не rule-based автоматика, а контекстная реакция с фильтрацией шума.
Если для задачи нет подходящего инструмента, агент может:
понять, что skill отсутствует;
найти библиотеку или API;
добавить новый skill;
использовать его дальше.
Это не обучение [4] модели и не “самоосознание”.
Это динамическое расширение функциональности системы.
Доступ к shell (возможность выполнять команды в ОС) – это риск. Здесь нет иллюзий.
Поэтому нормальная конфигурация включает:
контейнеризацию;
allowlist команд;
human-in-the-loop для опасных операций;
логирование и ограничение прав.
Хотя даже с этими мерами агент не становится безопасным «по умолчанию», но становится контролируемым.
Clawdbot не завязан на macOS.
Он работает:
на Windows;
на Linux;
в Docker;
на VPS;
на домашнем сервере.
Mac Mini – это не требование, а тренд, в основном западный. Причина простая: на macOS проще получить нативный доступ к экосистеме Apple. Если эти ресурсы не нужны, то Linux закрывает почти все сценарии.
Скорее всего, это заинтересует тех, кто:
строит автоматизацию сложнее cron + bash;
работает с long-running процессами;
не хочет отдавать контроль облачным ассистентам;
готов управлять рисками и инфраструктурой.
Если нужен просто умный чат – это не тот инструмент.
При этом идея автономного агента не ограничивается it-задачами.
Для всех остальных это выглядит проще:
система может сама следить за почтой и документами,
напоминать о делах не по таймеру, а по контексту,
заполнять формы,
бронировать услуги,
собирать регулярные сводки,
разбирать файлы по папкам
реагировать на события без постоянного контроля.
По сути, это личный помощник, который не просто отвечает на вопросы, а берёт на себя рутину и подключает человека только тогда, когда действительно нужно принять решение.
Лично меня привлекает то, что можно создать ему “собственные” учётки для мессенджеров (WhatsApp, Telegram) и общаться с ним именно таким способом. Например, он сможет сам прислать в телегу сообщение, что на сегодня запланированы “вот такие задачи”. А я смогу какие-нибудь из них переложить на него, мол “вот это сделай сам”. Конечно, с пониманием его возможностей и валидацией результата, где это необходимо.
Автономные агенты выглядят как логичное продолжение LLM-революции. Не замена DevOps, не «AI-сотрудник», а новый уровень оркестрации задач.
Clawdbot – наглядный пример того, как эта идея начинает приобретать инженерную форму. Не идеальную, не универсальную, но уже достаточно конкретную, чтобы с ней можно было работать.
P.S. Мой ближайший план: развернуть всё это уже на обычном VPS (1-2 CPU, 1-2 Gb RAM – для начала должно хватить) и посмотреть, как агент ведёт себя в условиях ограниченных ресурсов, без «домашнего сервера под столом» и без привязки к конкретной экосистеме. Отдельно интересно, какие сценарии действительно приживутся, а какие окажутся переусложнёнными. Про результаты и выводы будет отдельный материал.
Ссылка на репозиторий агента:
https://github.com/clawdbot/clawdbot [5]
Ссылка на проект:
https://clawd.bot/ [6]
Автор: kbond287
Источник [7]
Сайт-источник BrainTools: https://www.braintools.ru
Путь до страницы источника: https://www.braintools.ru/article/24737
URLs in this post:
[1] интерес: http://www.braintools.ru/article/4220
[2] реагировать: http://www.braintools.ru/article/1549
[3] память: http://www.braintools.ru/article/4140
[4] обучение: http://www.braintools.ru/article/5125
[5] https://github.com/clawdbot/clawdbot: https://github.com/clawdbot/clawdbot
[6] https://clawd.bot/: https://clawd.bot/
[7] Источник: https://habr.com/ru/articles/988970/?utm_source=habrahabr&utm_medium=rss&utm_campaign=988970
Нажмите здесь для печати.