- BrainTools - https://www.braintools.ru -

Информация. Подборка из книг. Мозг человека и искусственный интеллект. Напалков А. В., Прагина Л. Л.. Информационные механизмы работы мозга.

Блоки информационных систем

Мы уже говорили о том, что многие ученые-физиологи свои надежды на разгадку тайны интеллекта тесно связывали с разработкой новых методических приемов исследования. Они полагали, что если окажется возможным изучать функции нервных клеток в условиях свободного передвижения животных, если будут найдены средства, позволяющие одновременно исследовать работу многих элементов в нескольких отделах мозга, то тайны мышления будут раскрыты.

На путях достижения этой цели в прошлом возникали, казалось, непреодолимые препятствия. Было трудно представить себе, каким образом можно регистрировать активность отдельных нервных клеток в процессе работы мозга. Удалось записывать только биоэлектрические явления, возникающие при совокупной работе многих тысяч элементов. Такие методики исследования не обеспечивали возможность анализа динамики активности и взаимодействия элементов, они также не позволяли регистрировать активность элементов при осуществлении сложного поведения [1]. Само движение вызывало такие большие изменения потенциалов, которые маскировали процессы, происходящие при работе нервных клеток. Казалось, что причина трудностей заключается именно в невозможности расчленить мозг на элементы, изучить, как реагируют отдельные нервные клетки и как они взаимодействуют друг с другом.

Шаг за шагом ученые преодолевали эти трудности. Новые методики позволяли регистрировать активность нервных клеток в условиях свободного передвижения животных. Был создан специальный станок, в котором обезьяна могла свободно двигать лапами. Чтобы получить лакомый кусочек апельсина или банан, обезьяна в этом станке могла производить различные действия, решать поставленные перед ней задачи, открывать крышки, заслонки, выдвигать ящики. Обезьяна могла обучаться новым системам действий, и в этих условиях эксперимента оказывалось возможным изучать работу нервных элементов одновременно во многих отделах мозга. Было достигнуто то, о чем ранее могли только мечтать исследователи.

Однако, когда казалось, что разгадка тайн механизмов работы мозга близка, выяснилось, что перед исследователями стоят новые мощные заслоны и преграды. В результате экспериментов было показано, что в основе даже самых простых форм поведения [2] лежит комплексная работа многих отделов мозга. На различных стадиях формирования поведения изменяется характер констелляций, возникающих при функционировании нервных центров [3]. Можно было выявить большую или меньшую степень участил того или иного отдела. Но оставались закрытыми пути для решения основных проблем: какую роль в общей системе играет каждый отдел мозга, почему создается та, а не другая констелляция, каким образом совокупная работа нервных центров приводит к формированию поведения? Без решения этих вопросов процесс исследования вряд ли можно было считать завершенным. Одно из перспективных направлений исследования, как уже говорилось, было связано с изучением нейрофизиологических механизмов выработки [4] условного рефлекса [5]. Исследователи исходили при этом из предположения, что поскольку этот процесс — одна из основ работы мозга, то раскрытие физико-химических явлений, определяющих формирование временных связей, может привести к раскрытию механизмов высшей нервной деятельности [6]. Однако и на этом пути ученых ожидали неожиданности и новые трудности.

Большой объем приведенных в этом направлении исследований показал, что при выработке условного рефлекса [7] можно обнаружить активность нервных клеток практически во всех исследованных отделах мозга. Работами известного советского ученого Б. И. Котляра и его учеников было доказано, что при этом имеет место не только возникновение активности нервных элементов как ответа на включение сигналов, но и развитие комплекса длительных стационарных изменений в работе ансамблей нейронов (явление центрального тонуса).

Вместе с тем не удалось установить, какую именно роль играет каждый отдел и почему складывается та, а не иная интеграция в работе нервных центров. Оставалось неясным, почему для реализации простого явления, в котором как будто бы должны участвовать два нервных элемента, между которыми возникает временная связь, оказывается необходимой работа всего мозга в целом, всех его отделов. Фактически ученые не получили ответа на вопросы, которые составляют основу любого физиологического исследования. Создавалось впечатление [8], что полученные экспериментальные данные переросли те рамки, которые были созданы исходной теоретической концепцией. В таких условиях ни новые физические приборы, ни уникальные методы вживления тончайших электродов в структуры мозга не смогут обеспечить решение возникающих проблем.

По мере накопления данных нейрофизиологических исследований некоторые ученые стали сомневаться в том, что такой путь, определяемый старой концепцией, в конце концов может привести к раскрытию механизмов работы мозга. Академик П. К. Анохин в своей статье «В наших силах предотвратить угрозу», опубликованной в «Литературной газете», так охарактеризовал положение, сложившееся в этой области науки: «Мы должны признать, что современная нейрофизиология — наука [9] о мозге — не имеет большой теории, которая могла бы вывести исследователя из тупика, образованного нагромождением неорганизованных фактов.

В такой ситуации нет ничего необычного. Отсутствие развернутой теории — довольно распространенный дефект в науке. Среди крупных ученых, подходящих к изучению мозга с совершенно различных позиций, укрепляется мнение, что дальнейшая детальная разработка отдельных вопросов приносит все меньше и меньше пользы, что надо заняться поисками общих принципов организации головного мозга. Многие выдающиеся исследователи с прискорбием констатируют нашу неспособность хотя бы в общих чертах описать эти общие принципы. И хотя ученые, исследующие работу мозга, трудятся не покладая рук, значительная часть их работы никогда и никем не будет использована, потому что опыты ставятся без всякой системы и специальная литература буквально наводнена сообщениями о весьма бессодержательных экспериментах».

П. К. Анохин и его ученики предприняли смелые и решительные шаги, для того чтобы вывести нейрофизиологию из возникшего тупика. Была создана концепция о работе функциональных систем и поставлена задача их теоретического и экспериментальногс исследования. Функциональная система [10] — явление, которое не сводится к рассмотрению закономерностей формирования поведения или к рассмотрении нейрофизиологических систем. Это особая категория системных явлений, которые отражают функциональную сторону работы мозга. К их числу относится явление афферентного синтеза, формирования домини-рующей мотивации [11], акцептора результата действия, принятие решений.

П. К. Анохин пришел к выводу о том, что про стая система представлений об осуществлении реакций [12] на внешние сигналы недостаточна для объяснения механизмов работы мозга. Любой деятельности мозга человека и животных предшествует процесс привлечения нужной информации, ее преобразование и объединение в новые организации. Не подлежит также сомнению тесная связь формирования нового поведения с возникновением различных мотивов. Мотивы возникают и видоизменяются в процессе активной деятельности человека. Часто имеет место «столкновение», конкуренция различных мотивов и в конечном счете определение главного, «доминирующего» мотива. Был сделан также вывод о том, что параллельно с формированием новых программ поведения осуществляется построение систем оценок его результатов. Возникают специальные комплексы сигналов, с которыми сравнивается поступающая извне информация. Если имеет место совпадение, значит, план поведения был построен правильно и можно идти дальше по «намеченному пути». Если возникает «рассогласование» между «ожидаемым» и полученным результатом, то осуществляется процесс пересмотра планов. Актуальность такого механизма при формировании поведения человека и животных была доказана многочисленными экспериментами. Таким образом, внимание исследователей было привлечено к функционированию целостных единиц, блоков работы функциональной системы.

Ученики и последователи П. К. Анохина В. Б. Швырков, Е. А. Умрюхин, К- В. Судаков, В. А. Шидловский применили эту концепцию при анализе работы различных биологических систем и показали ее эффективность. Е. А. Умрюхин построил кибернетические модели, отражающие работу описанных выше компонентов функциональных систем. А. Р. Лурия [13] и Е. Д. Хомская использовали теорию функциональных систем при анализе нарушений в работе мозга больных, у которых в результате травмы или хирургической операции была исключена из работы та или иная часть мозга.

Наряду с изучением функциональных систем в настоящее время большое значение приобретают исследования, которые указывают на наличие при работе мозга более сложных принципов организации информационных систем, связанных с образованием и функционированием целостных агрегатов, блоков, несущих специфические функции.

Членом-корреспондентом АН СССР Л. В. Крушинским была создана система представлений о роли так называемых «унитарных» реакций при осуществлении «рассудочной деятельности» животных. Было доказано, что сложную информационную деятельность мозга нельзя представить себе только как функционирование систем условных рефлексов. Решающее значение приобретает взаимодействие целостных «агрегатов», «блоков», каждый’ из которых объединяет в своем составе системы как безусловных, так и условных рефлексов. При функционировании таких агрегатов (унитарных реакций) возникают специфические явления и законы, без знания которых невозможно подойти к пониманию сложных форм работы мозга и построению «искусственного интеллекта».

Л. В. Крушинский подробно изучил ряд таких организаций • и выявил законы, определяющие их функционирование. Он показал, что на этой основе можно подойти к анализу «рассудочной деятельности» животных. Выявление роли унитарных реакций привело к возникновению нового этапа в изучении работы мозга. Стало очевидным, что при анализе интеллектуальной деятельности необходимо проведение работ на различных «уровнях интегративной деятельности».

Оказалось, что механизмы интеллектуальной деятельности не могут быть поняты только как результат процесса формирования и использования систем условных рефлексов, алгоритмов работы мозга. Функционируют сложные автономные организации, каждая из которых несет свои функции. Такие организации имеют информационный характер, не связанный непосредственно с принципами построения морфофизиологических систем.

Описанные исследования создали существенные предпосылки для организации комплексных исследований, объединяющих изучение информационных систем и реализующего их работу нейрофизиологического субстрата. Стало очевидным, что только такие подходы могут обеспечить раскрытие механизмов работы мозга. Поясним эту мысль на примерах.

Попытаемся представить себе процесс исследования какого-либо механизма, например оптической системы глаза. Начав рассмотрение с какой-либо части объекта, предположим хрусталика глаза, исследователь стремится понять функцию этого отдела, используя известные ему законы оптики. Определив функцию, в данном случае связанную, с преломлением лучей света, он устанавливает связь хрусталика с другими частями механизма, например с работой сетчатки, мышц, изменяющих форму хрусталика. На этой основе исследователь подходит к раскрытию общих принципов функционирования системы, объединяющей работу многих частей в различных режимах ее работы, в частности при адаптации глаза к интенсивности света, к восприятию предметов на различном расстоянии от глаза и т. д.

При попытках организовать подобную процедуру исследования при изучении высшей нервной деятельности возникли трудности. Спецификой работы мозга являлось то, что основные функции этой системы были связаны с переработкой информации.

Изучая процессы пищеварения, дыхания, работу печени, почек, физиолог имел дело с такими объектами, для которых было свойственно единство структурной организации и функции. Например, изучая пищеварение, биохимические процессы, лежащие в основе расщепления жиров, углеводов, удавалось создать тесное сочетание выявления новых компонентов системы с анализом решаемых ими задач, с задачами разложения сложных химических соединений на отдельные компоненты и синтезом новых специфических для организма веществ. Это имело большое значение для исследователей. Ученый, описывая новый компонент в работе системы, имел возможность сразу определить его функцию, что приводило к возможности установления связи между частями системы, раскрытия целостной организации механизма, планомерного выявления недостающих компонентов изучаемой системы.

При изучении мозга на основе изолированного применения электрофизиологических методик такие возможности комплексного исследования, опирающегося на изучение частей системы и определения их функций в связи с их ролью в целостной системе, отсутствовали.

Ученые делали попытки создать представления о функциях изучаемой системы, исходя из описания таких явлений» как обучение, память [14], мотивация [15].

Однако мы видели, что все эти явления представляют собой вторичный результат интегративной работы целого ряда алгоритмов.

Конечно, при осуществлении любого из перечисленных видов деятельности мозга имеет место работа нервных центров. Однако, поскольку алгоритмы не имеют прямого соответствия с организацией морфофизиологических систем мозга, оказывается необходимым участие многих отделов мозга. Каждый из них выполняет свою специфическую роль в комплексной работе. Но эта роль не могла быть выявлена нейрофизиологическими экспериментами. Между исследуемым процессом формирования поведения и активностью нервных структур возникает такая сложная система промежуточных информационно-структурных преобразований, что ученый лишается возможности устанавливать функции как всей системы в целом, так и ее отделов. Фактически не удавалось подойти к раскрытию механизмов работы мозга, выявить ту роль, которую играет каждый отдел, и такую специфику в организации взаимодействия нервных центров, которая могла объяснить, каким образом работа мозга в целом приводит к возникновению психических явлений. Подводя итоги экспериментальных и клинических исследований, ученые часто приходили к выводу, что в осуществлении любой психической деятельности и любого поведения принимает участие весь мозг как целостная система. Для того чтобы преодолеть возникающие трудности, ученые делали попытки глубже проанализировать строение отдельных нервных клеток, биохимические процессы, ответственные за процесс возбуждения [16], структуру проводящих путей, определяющих характер связей между отделами мозга. Однако чем успешнее они осуществляли детальный анализ, тем дальше уходили от раскрытия механизмов. Не удавалось подойти к выявлению тех задач, которые определяют работу мозга и его организацию. Выявляя новые факты о функционировании нервных элементов, исследователь не мог оценить их значимость в работе целостной системы. Новые факты связывались с анализом физических и химических явлений, в то время как целостные системы основывались на функционировании информационных механизмов. Выход из создавшегося положения мог быть найден только на пути организации комплексного исследования. При этом уже на первой стадии исследования должны были быть определены информационные задачи, составляющие основу работы мозга. Далее на этой основе должны быть построены целостные гипотезы о работе информационных систем. Значение всех новых фактов, получаемых в электрофизиологических и нейрохимических исследованиях, должно быть определено на основе анализа схем, отражающих работу информационных механизмов. Какие же предпосылки были уже созданы? Нейрофизиология располагала нужными методиками исследования и большим объемом накопленных фактов. Хуже обстояло дело с изучением информационных механизмов. Мы говорили об изучении алгоритмов. Возник вопрос, могут ли алгоритмы являться основой сложных форм работы мозга. Исследования указывали на то, что помимо алгоритмов решающее значение имеют более сложные целостные блоки функциональных систем. Как совместить эти две концепции?

Было важно также выяснить, нельзя ли представить работу блоков, например блока акцептора результатов действий, как определенную композицию, состоящую из простейших, определенных И. П. Павловым компонентов (рефлекс на комплексный раздражитель, условный тормоз и др.). и тем самым построить единую концепцию о работе информационных систем, или для этого нужно привлечь новые понятия, выявить какие-то дополнительные компоненты организации системы.


Сайт-источник BrainTools: https://www.braintools.ru

Путь до страницы источника: https://www.braintools.ru/article/3057

URLs in this post:

[1] поведения: http://www.braintools.ru/article/9372

[2] поведения: http://www.braintools.ru/article/5593

[3] нервных центров: http://www.braintools.ru/article/9225

[4] выработки: http://www.braintools.ru/article/5568

[5] рефлекса: http://www.braintools.ru/article/9352

[6] высшей нервной деятельности: http://www.braintools.ru/article/8992

[7] рефлекса: http://www.braintools.ru/article/8998

[8] впечатление: http://www.braintools.ru/article/2012

[9] наука: http://www.braintools.ru/article/7634

[10] Функциональная система: http://www.braintools.ru/article/9050

[11] мотивации: http://www.braintools.ru/article/9537

[12] реакций: http://www.braintools.ru/article/1549

[13] А. Р. Лурия: http://www.braintools.ru/article/5732

[14] память: http://www.braintools.ru/article/4140

[15] мотивация: http://www.braintools.ru/article/9384

[16] возбуждения: http://www.braintools.ru/article/9158

www.BrainTools.ru

Rambler's Top100