Усиление кальциевого тока, выраженное в продлении кальциевого компонента потенциала действия после стимуляции сенситизирующего пути, можно было создать внеклеточным нанесением серотонина или двух веществ, которые повышают внутриклеточный уровень цАМФ, ингибируя фосфодиэстеразу — фермент, катализирующий расщепление цАМФ. Такие же эффекты наблюдались после прямой внутриклеточной инъекции цАМФ, но не 5′-АМФ.
На основании этих данных Клейн и я предположили, что стимуляция облегчающих нейронов сенситизирующего пути ведет к выходу серотонина, который активирует серотонин-чувствительный фермент (аденилатциклазу) в мембране окончания сенсорного нейрона. Возникающее при этом в окончании увеличение количества цАМФ ведет к усиленной активации кальциевого тока либо непосредственно путем активации кальциевого канала, либо косвенно, снижением противодействующего калиевого тока. С каждым потенциалом действия растет приток кальция и выход медиатора.
Главное, что вначале привлекло к использованию аплизии для изучения поведения, было наличие крупных клеток, электрические свойства и связи которых доступны детальному исследованию. А теперь размеры этих клеток могут оказаться еще более выгодными для изучения субклеточных и биохимических механизмов обучения, с одной стороны, и возможных изменений мембранной структуры — с другой. Так, например, интересно узнать поточнее, как повышение уровня цАМФ при сенситизации связано с активацией кальциевого тока, поскольку установление механизма этой связи может послужить первым шагом к пониманию на молекулярном уровне этой простой формы кратковременного обучения.
На память приходит целый ряд механизмов. Как полагают, каналы, по которым ионы проходят через мембрану нейрона, состоят из белковых молекул. Поэтому очевидная возможность состоит в том, что цАМФ активирует одну или более протеинкиназ — ферментов, которые, по предположению П. Грингарда (P. Greengard) из Медицинской школы Йельского университета, могли бы служить общим молекулярным механизмом различных эффектов цАМФ внутри клетки. Протеинкиназы — это ферменты, которые фосфорилируют белки, иначе говоря, присоединяют фосфорильную группу к боковой цепи аминокислот серина или треонина в белковой молекуле и этим придают белкам иной заряд и иную конфигурацию, что меняет их функцию, активируя одни и инактивируя другие. Фосфорилирование могло бы служить эффективным механизмом регуляции памяти. Один из способов, каким могла бы действовать сенситизация, состоит в том, что белок кальциевого канала активируется (или же белок антагонистического калиевого канала инактивируется) при фосфорилировании его протеинкиназой, зависимой от цАМФ.
Модель кратковременной сенситизации и привыкания на уровне одиночного сенсорного нейрона, начиная с контрольной ситуации, когда клетка генерирует импульсы до наступления сенситизации или привыкания. Нервный импульс в концевой мембране нейрона открывает параллельно натриевым каналам (Na + ) ряд каналов для ионов кальция (Са++). Сенситизация вызывается группой клеток L29 (возможно, и другими), которые, как полагают, выделяют медиатор серотонин. Он действует на аденилатциклазу, фермент, катализирующий синтез циклического аденозинмонофосфата (цАМФ) в нейронных окончаниях. цАМФ повышает приток ионов кальция, возможно, создавая больше кальциевых каналов. Кальций усиливает слияние содержащих медиатор пузырьков с мембраной в местах его выделения, увеличивая вероятность последнего. При привыкании многократная импульсация в окончаниях, возможно, уменьшает число открытых кальциевых каналов, понижая приток кальция и инактивируя синапс.
Сенситизация занимает интересное место в иерархии обучения. Ее часто считают предшественницей классического условного рефлекса. В обеих этих формах рефлекс на стимул усиливается в результате активации другого пути. Сенситизация отличается от условного рефлекса тем, что она не ассоциативна; сенситизирующий стимул повышает рефлекторную реактивность независимо от того, сочетается ли он во времени со стимулом, вызывающим рефлекс. Теперь Э. Гелперин (A. Gelperin) из Принстонского университета, Дж. Мпитсос (G. Mpitsos) и С. Коллин (S. Collins) из Университета Кейса Западной резервной территории, а также Т. Кроу (Т. Crow) и Д. Олкон (D. Alkon) из Национальных институтов здравоохранения к настоящему времени обнаружили у моллюсков несколько типов ассоциативного обучения. Недавно мы с Т. Уолтерсом (Т. Walters) и Кэрью получили доказательства ассоциативного обучения у аплизии. Поэтому скоро мы будем в состоянии точно проанализировать, как механизмы сенситизации соотносятся с механизмами ассоциативного обучения.
Другое возможное теперь направление исследования состоит в рассмотрении связи между исходным развитием нейронной цепи у эмбриона и ее последующей модификацией обучением. И при развитии, и при обучении в нервной системе происходят функциональные изменения — меняются эффективность синапсов и другие свойства нейронов. Как соотносятся такие изменения? Основаны ли механизмы обучения на механизмах пластичности, проявляющейся во время развития или же позднее формируются совершенно новые специализированные для обучения процессы?
Какими бы ни оказались ответы на эти интригующие вопросы, при исследовании беспозвоночных животных возникло поразительное и обнадеживающее обстоятельство: теперь стало возможным точно локализовать и наблюдать на клеточном – а в конце концов, возможно, и на молекулярном – уровне простые свойства памяти и обучения. Хотя для сложного головного мозга высших животных характерны некоторые высшие проявления умственной деятельности, теперь стало ясно, что элементарные свойства того, что считается мыслительными процессами, можно обнаружить в активности лишь очень малого числа нейронов. Поэтому и с философской, и с методической точек зрения интересно будет узнать, в какой степени высшие формы мышления можно объяснить действием более простых компонентов и механизмов. В той мере, в какой возможны такие редукционистские объяснения, важно также установить, как единицы этой элементарной азбуки комбинируются для создания языка гораздо более сложных мыслительных процессов.