Теория автоматов в системе исследований высшей нервной деятельности. Мозг человека и искусственный интеллект. Напалков А. В., Прагина Л. Л.. Мозг человека, мышление и кибернетика. - страница 3

При осуществлении попытки применения теории, автоматов не учитывалась также возможность использования более сложных принципов организации взаимоотношения между работой алгоритмов и их реализацией в физико-химических системах. Во многих случаях непосредственная реализация алгоритма в структуре автомата нецелесообразна. Если кибернетическая система должна обеспечить одновременную работу многих алгоритмов, необходимо их объединить в единую систему (осуществление информационного синтеза), В результате такой процедуры возникает новая организация, описываемая новым обобщенным языком. Именно такая организация, а не отдельные алгоритмы должна быть реализована в структуре автомата. Но в этом случае уже не удастся установить непосредственного соответствия элементов алгоритма и тем более поведения со структурой автомата. – –

Мы уже говорили о том, что при создании вычислительных машин были использованы более совершенные и гибкие принципы взаимодействия программ и реализующего их работу физико-химического субстрата. В этом случае одна и та же вычислительная машина могла обеспечивать работу различных программ и алгоритмов. Фактически ее организация не предопределяла работы самих программ, а только создавала условия для их реализации и функционирования. Возникала более сложная система отношений.

Различие между организацией двух описанных типов было проиллюстрированно нами на примере сравнения устройства арифмометра с вычислительной машиной. При использовании арифмометра алгоритмы воплощены непосредственно в форме физической организации прибора (в виде определенных шестеренок, которые позволяют механически осуществлять арифметическйе операции). Этот принцип эффективен в определенных условиях.

Вычислительная машина построена на других принципах. Большое значение имеет организация программ, алгоритмов. Последние предопределяют характер конкретной деятельности системы, например способность вычислительной машины участвовать в игре в шахматы, осуществлять балансировку конвейерных линий, управлять производством и т. д. Субстрат информационной деятельности, ее физико-химическая система построены на основании решения специальных задач создания условий реализации и использования программ и алгоритмов, а не задач осуществления какого-либо конкретного поведения. Эти задачи предопределяют специальные функциональные схемы соотношения блоков. Например, процессор обеспечивает преобразование информационных структур. Монитор, супервайзер решают задачи управления работой программ. Включается специальное устройство «разделения времени», которое обеспечивает возможность одновременного обслуживания большого числа «пользователей». Функции всех этих блоков, как это видно из их наименования, не связаны не только с конкретным поведением или каким-либо иным внешним проявлением в работе системы (например, способностью к обучению, выработке условных рефлексов), но и с организацией отдельных алгоритмов.

Устройство мозга, по-видимому, непосредственно не соответствует ни одной из приведенных схем организации информационных систем. Однако трудности, которые возникают при его исследовании, заставляют думать о наличии достаточно сложной системы отношений между информационной и физико-химическими системами. При формировании мозга в процессе эволюции были использованы, видимо, принципы, которые предусматривают, что в осуществлении каждого поведенческого акта должны участвовать многие нервные центры. Наличие такого принципа было обнаружено в физиологических исследованиях.

Ученые предпринимали, например, многочисленные попытки расшифровки механизмов формирования двигательных актов на основе изучения простых движений типа почесывания, отряхивания. Они думали, что выбор таких элементарных движений облегчит процесс исследования и позволит затем перейти к анализу более сложных явлений. Однако их надежды не оправдались. Задача раскрытия механизмов не была решена.

Дело в том, что в морфофизиологических системах мозга отсутствует непосредственное представительство как механизмов формирования отдельных простых двигательных актов, так и лежащих в их основе алгоритмов. В процессе эволюции была создана единая система, обеспечивающая формирование движений как целостного процесса, частными проявлениями которого являлись исследуемые движения типа почесывания, отряхивания и др. В этом заключаются трудности в исследовании работы нервной системы и причина неудачи в использовании тео’рии автоматов.

Для того чтобы расшифровать механизмы работы мозга, нужно знать не только алгоритмы его работы, но и пути их объединения в системы более сложного типа. Следовательно, методики изучения работы мозга, основанные ‘на использовании теории автоматов, могут оказаться эффективными только в условиях организации комплексного исследования. При этом сначала должны быть раскрыты информационные задачи, составляющие основу интеллектуальной деятельности, алгоритмы их решения. Далее должны быть выявлены задачи, решаемые при работе физико-химических систем, выполняющих функции субстрата информационной деятельности, и, наконец, намечен переход к определению тех локальных частных подзадач, которые составляют основу информационной деятельности исследуемого отдела мозга. Только после этого может быть успешно применена теория автоматов.

Трудности, возникшие при использовании теории автоматов, привели к поискам других путей решения проблемы построения «искусственного интеллекта», к развитию нового направления кибернетики — «эвристического программирования».

страницы: 1 2 3

Rambler's Top100