Вместе с тем концепция об алгоритмах работы мозга выдвинула целый ряд новых весьма сложных проблем науки. В тот период, когда алгоритмы составляли предмет изучения математиков, главной задачей было их создание и использование. Сам процесс создания алгоритмов не стал предметом специального научного изучения, так как считалось, что алгоритм может открыть только математик, обладающий большими творческими способностями.
При изучении алгоритмов биологических систем необходимо было выяснить, как выявить те алгоритмы, которые уже существуют в работе мозга и которые были созданы в процессе эволюции. Задача эта весьма сложная. Трудность связана с описанными выше свойствами алгоритма, в частности со свойством массовости. Один и тот же алгоритм при своем функционировании приводит к большому разнообразию конкретных форм поведения. В каждой конкретной ситуации он проявляется “по-разному. Это замечательное свойство создавало существенные препятствия при изучении алгоритмов и ставило трудные проблемы перед исследователями. Особенности проявления алгоритма в различных условиях приводят к «маскировке» основной его структуры и закономерностей работы. Так, например, если наблюдать работу алгоритма игры в шахматы, реализованного на вычислительной машине, то можно убедиться в том, что в каждой конкретной новой ситуации игры он действует по-разному. Поэтому на основе анализа различных форм поведения очень трудно восстановить истинную природу алгоритма. Обычные методы исследования, например методы статистической обработки полученных данных, не оказываются в данном случае результативными. Алгоритм записан на специальном языке. Для того чтобы сформулировать правила его работы, нужно прежде всего открыть тот язык, те понятия более высокого уровня абстракции, которые составляют основу работы алгоритма.
Для более детального изучения этого явления были проведены специальные эксперименты. На вычислительной машине реализовывался тот или иной -алгоритм игры, например алгоритм игры «побеждает чет». Затем испытуемому предлагалось провести исследование работы данной машины и выявить, на основании каких правил и принципов машина приобретает способности осуществлять успешную игру. При этом разрешалось проводить любые эксперименты и статистически обрабатывать данные. Однако такой эксперимент не давал положительных результатов. Можно было выявить некоторые корреляции между действиями вычислительной машины и специфическими особенностями возникающих в игре ситуаций и сделать некоторые выводы, но при внимательном рассмотрении выяснилось, что эти выводы не имеют под собой реальной основы. Они ошибочны и не приближают к пониманию основных механизмов деятельности, т. е. к раскрытию алгоритма. Они часто даже уводят в сторону от раскрытия истины.
Описанные эксперименты привели к весьма существенным и неожиданным выводам. Создавалось впечатление, что применяемые в настоящее время в биологии при изучении мозга методики исследования, основанные на постановке эксперимента и статистической обработке экспериментальных данных, в принципе не могут стать основой выявления алгоритма, а между тем часто именно алгоритм определяет сущность явления. Возникло предположение, что до сих пор исследователи не имели ключей для разгадки одной из важнейших тайн природы — раскрытия механизмов информационной деятельности.
Следующая категория трудностей была связана с тем, что алгоритм как целостная организация описывается на таком языке, который позволяет реализовать эту систему на различном физико-химическом субстрате. Субстрат может обеспечить работу различных алгоритмов, и в тоже самое время каждый алгоритм может быть реализован на различной физико-химической основе, т. е. сама организация субстрата не связана со спецификой организации и работы алгоритма, она только создает условия для его функционирования. Таким образом, изучение морфо-физиологических и физико-химических механизмов работы мозга также не могло привести к раскрытию алгоритмов. Между тем в течение многих десятков лет исследователи пытались выявить принципы управления и переработки информации на основе изучения организации физических и химических систем. Ученые исходили из предположения о том, что если они изучают передачу возбуждения с одной нервной клетки на другую, реакции нейронов на различные, подаваемые извне сигналы, то они проводят анализ систем переработки информации. Они полагали, что последовательное развитие таких исследований, накопление новых фактов, использование все новых и новых более тонких и точных методических приемов в конечном итоге должно привести к полной расшифровке механизмов деятельности мозга, включая и работу информационных систем.
Исследования в области молекулярной биологии, генетики, эмбриологии основывались также на том, что анализ биохимических процессов (например, процессов синтеза белка) в конечном итоге раскроет информационную сущность явления. Молекулярная биология рассматривалась как определенный раздел биохимии. Поэтому в течение длительного периода времени не возникала необходимость в каких-либо дополнительных подходах к исследованию, поиску новых методов.
Анализ основных свойств алгоритмов обусловливал необходимость пересмотра описанных выше тенденций в развитии науки. Стало очевидным, что изучение субстрата информационной деятельности не обеспечивает полного анализа механизмов и, в частности, выявления алгоритмов. Для того чтобы понять работу механизмов, надо было выявить как закономерности работы алгоритмов, так и принципы организации субстрата, реализующего их деятельность.