Онтогенез новой коры. Организующий принцип функции мозга: Элементарный модуль и распределенная система. В. Маунткасл.

Онтогенез новой коры приматов прослежен работами ряда исследователей, применявших радиоактивные метки для делящихся клеток, а в интересующем нас аспекте — в особенности ра­ботами Ракича на обезьянах. Все клетки, предназначенные для новой коры макака, возникают из вентрикулярной и субвентрикулярной зон нервной трубки в течение двухмесячного периода между 45-м и 102-м днем при 165-дневном внутриутробном периоде. Клетки, предназначенные для все более поверхностных слоев, возникают в правильной временной последовательности: новая кора строится “изнутри кнаружи”. Клетки, которые появляются рано, главным образом из вентрикулярной зоны, могут передвигаться по своим коротким миграционным траекториям длиной 200—300 мкм посредством вытягивания от­ростка и перемещения ядра. Клеткам, возникшим позднее, приходится мигрировать на расстояния до 10 мм; к своему окончательному местоположению они движутся вдоль по­верхностей радиально ориентированных глиальных кле­ток, которые тянутся через всю стенку нервной трубки. В результате клетки коры располагаются радиально ори­ентированными тяжами, или колонками, пересекающими кору, и по существующему предположению клетки каждой такой колонки представляют собой единый клон. Ракич (1972, 1972) а также Шмехель и Ракич (1973) подробно изучили особые глиальные клетки. У обезьяны их можно иденти­фицировать на 70-й день внутриутробного развития после начала миграции нейронов. Число их начинает снижаться к 120-му дню — через 2 недели после завершения мигра­ции; затем обнаруживаются их переходные формы.

На основании результатов этих исследований, развития новой коры и изучения ряда препаратов мозга, взятых у плодов, можно сказать, что цитоархитектонические различия, характерные для новой коры новорожденных и взрослых приматов, еще не суще­ствуют к тому времени развития плода, когда все клетки коры достигли своего окончательного положения. Четкие архитектонические черты можно обнаружить к стадии Е-108 — через неделю после генерации последних клеток коры, когда волокна из латерального коленчатого тела только достигли коры. В это время поле 17 становится почти таким же отчетливым и резко очерчен­ным, как у взрослого. Его границы идут вдоль краев шпорной борозды, глубина которой сильно возрастает за предшествующие 10 дней. В других частях новой коры обезьяны на этой стадии (Е-108) наблюдается хотя и менее выраженная, но существенная архитектоническая дифференциация. Один из таких примеров можно видеть меж­ду полями 3 и 4 в стенках появляющейся центральной борозды. Представляется, таким образом, что внутренняя морфологическая дифференцировка новой коры начинается сразу же после той стадии, на которой клетки коры достигают своего окончательного положения. Исследование плодов подтвердило данные Ракича о том, что на этой стадии развития клетки коры расположены отчетливыми колонками.

Существует ли причинная связь между цитоархитектоническими и функциональными различиями разных областей коры?

Даже краткий просмотр серийных срезов свидетельствует о различиях во внутреннем строении разных частей коры больших полушарий, особенно новой коры. Развитие учения о цитоархитектонике началось с Мейнерта и связано с именами Кэмпбелла, Бродмана, Э. Смита, Экономо и Фоттов. Их усилия и труды многих, кто следовал за ними, привели к детальному подразделению и соответственно созданию карт коры больших полушарий у многих млекопитающих, в том числе у человека, на основании различий в числе и плотности упаковки клеток разных типов и величины в гомологичных слоях разных частей коры. В некоторых случаях применялись другие критерии, например, степень и временная последовательность миелинизации внутренних и наружных нервных волокон. По мнению авторов, искушенных в деле подразделения коры больших полушарий и доведших его до предела, целесообразно делить кору даже на очень мелкие части. Некоторые специалисты по цитоархитектонике и неврологии того времени заняли позицию, с которой эти морфологически идентифицированные участки надо рассматривать как квазинезависимые “органы” мозга, каждый из которых функционирует независимо от соседних отделов. В течение полстолетия такая точка зрения серьезно не оспаривалась. Первые годы цитоархитектонических исследований сменились периодом жарких споров; реакция против дробного деления была так сильна, что некоторые ученые считали все различия между областями коры, кроме самых очевидных, субъективными впечатлениям.

Теперь эти старые споры, по-видимому, улажены. Все согласились на том, что различия между основными областями новой коры действительно существуют и что они могут быть описаны объективно. Они представляют собой постоянное свойство новой коры любого вида животных, и между выделенными таким образом областями можно установить гомологию в большом ряду млекопитающих. Не вызывает также сомнений тот факт, что разные по цитоархитектонике области коры служат разным функциям, причем термин “функция” используется в обычном, принятом значении (например, управление движением или обработка сенсорных входных сигналов). Во всяком случае, такое заключение следует сделать на основании почти столетнего изучения эффектов электрической стиму­ляции новой коры и изменений поведения, которые вызы­ваются повреждениями, ограниченными тем или иным крупным цитоархитектоническим полем. Это заключение значительно укрепили последние цитоархитектонические работы, особенно те, в которых использованы новые мето­ды выявления связей (большой вклад внесли здесь Наута, Пауэлл, Джонс, Кайперс, Экерт и другие). Теперь можно сделать вывод, что каждая область новой коры, обладающая собственной цитоархитектоникой и собственной “функцией”, обладает также отличным от других набором внешних связей, т. е. своей собственной организацией таламических, кортико-кортикальных, межполушарных и длинных нисходящих связей. Таким образом, важный вопрос относительно новой коры состоит в следующем: в какой мере причинно связаны между собой три перемен­ные — цитоархитектоника, внешние связи и “функция”? О четвертой переменной, а именно о различиях во внутренних микросвязях разных областей, мало что известно. Открытие спонтанной электрической активности в коре больших полушарий поставило вопрос о том, различа­ются ли области коры, определяемые цитоархитектонически, также и по характеру электрической активности, отводимой от поверхности коры или от соответствующего участка черепа. Обнаружено было, что электроэнцефалограммы очень крупных областей — лобной, теменной и затылочной долей — действительно совершенно различны, но не было найдено характерных различий между записями, полученными на участках, лежащих внутри этих более крупных областей, — участках, которые четко и иногда поразительно различаются по своей структурной организации. Во всяком случае, до их пор исследование спонтанной медленной активности новой коры мало что раскрыло в ее внутренней функциональной организации.

В ряде работ Розе и Вулси впервые успешно осуществили сочетание описательной цитоархитектоники с экспериментальным анализом. Например, они установили, что те области лимбической коры кошки и кролика, которые проецируются на три передние ядра дорсального таламуса, четко различаются по цитоархитектоническим критериям и что каждая определенная таким образом область получает все волокна только от одного ядра при наличии узкой переходной зоны между областями. Такое же совпадение было установлено между орбитофронтальной корой кошки, определенной ее внутренней структуре, и корковой проекционной зоной медиодорсального ядра. Эти же авторы в своем исследовании слуховой коры кошки добавили третий, независимый от предыдущих, критерий определения размеров коркового ноля. Здесь все три критерия — цитоархитектоника, корковая зона проекции медиального коленчатого ядра дорсального таламуса и область коры, активируемая электрической стимуляцией спиральной кости пластинки улитки, — дали практически совпадающие границы слуховой коры. Это привело к общему заключению, что ту или иную зоны коры можно определять и по ее внутренней структуре, и как проекционную зону специфического таламического ядра. Такое обобщение впоследствии подтвердилось в большом числе работ на многих видах, в том числе на приматах. Результаты недавних электрофизиологических исследований с анализом активности отдельных нейронов значительно подкрепили это представление, так как было показано, что можно установить корреляции статических и динамических функциональных свойств корковых нейронов с цитоархитектонической областью, в которой они расположены. Это было установлено у обезьян в состоянии неглубокого наркоза, у ненаркотированных, но обездвиженных, и у бодрствующих животных в условиях свободного поведения — в соматосенсорной, зрительной, моторной и ассоциативной областях. Резюмируя, я прихожу к заключению, что цитоархиктонические различия между областями новой коры отражают различия в распределении их внешних связей. Это распределение далеко не случайно. Оно детально и строго специфично для каждой области; собственно говоря, оно характеризует каждую область. Традиционные или обычные “функции” разных областей тоже отражают эти различия во внешних связях; но они не несут никакой информации о различиях во внутренней структуре или функции. Это приводит к мысли, что новая кора функци­онально везде гораздо однороднее, чем предполагали раньше, и что ее стремительное увеличение у млекопитающих и в особенности у приматов совершалось путем умножения основного нейронного модуля, а не появления совсем новых типов нейронов или качественно отличных форм внутренней организации. Поэтому цитоархитектонические различия, возможно, отражают отбор (селекцию) или объединение в группы модулей в определенных областях с определенными группами входных и выходных связей. В первичных моторной и сенсорных областях коры этот отбор производится одной сильно доминирующей связью, и цитоархитектоническая идентификация гетеротипических областей ясна и очень отчетлива. Области гомотипической эуламинарной коры (95% новой коры человека) характеризуются более равномерно распределенными группами внешних связей, и здесь цитоархитектонические различия, хотя и отчетливы, но менее резки. Таким образом, главная задача, которую нужно разрешить, чтобы попять функцию новой коры, и, следовательно, большого мозга, состоит в раскрытии внутренней структурной и функциональной организации неокортикального модуля.

Этот модуль, как я полагаю, и получил название кортикальной колонки.

Rambler's Top100