Ученые научились быстрее находить положение минимума функции, не вычисляя ее значений. Методы оптимизации.. Методы оптимизации. Порядковый оракул.. Методы оптимизации. Порядковый оракул. Проблема черного ящика.. Методы оптимизации. Порядковый оракул. Проблема черного ящика. стохастическая оптимизация.. Методы оптимизации. Порядковый оракул. Проблема черного ящика. стохастическая оптимизация. ускорение Нестерова.

Российские ученые из МФТИ, Сколтеха и Иннополиса провели теоретическое исследование и компьютерное моделирование новых методов оптимизации, основанных на использовании сравнений значений функции между собой без знания самих значений этой функции и ее производных. Им удалось построить более эффективные алгоритмы, чем традиционные, и открыть обсуждение использования концепции порядковых оракулов в вычислении. Работа опубликована в материалах конференции NeurIPS 2024.

Проблема черного ящика (black-box problem) в задачах оптимизации относится к ситуации, когда целевая функция или система, которую нужно оптимизировать, является непрозрачной и недоступной для анализа. Одним из подходов в решении подобных проблем являются порядковые оракулы, которые позволяют сравнивать значения функции, не обращаясь к ее значениям непосредственно, что может облегчить решение задачи оптимизации. 

С недавним появлением концепции порядковых оракулов исследователи начали изменять подходы к оптимизации, используя информацию о порядке значений функции для создания более совершенных алгоритмов. Эта концепция становится особенно важной в контексте многих современных приложений, таких как обучение с подкреплением, кросс-валидация и оптимизация гиперпараметров, где доступ к данным часто ограничен.

В свежей статье, представленная на конференции NeurIPS 2024, авторы предлагают новые подходы. Они создали оптимизационный алгоритм, который использует порядковый оракул, и предложили способ ускорения этого алгоритма. Исследователи подтвердили теоретическую состоятельность предложенных методов через численные эксперименты, которые продемонстрировали их высокую производительность. 

функции

Рисунок 1. Сравнение предложенного алгоритма с неускоренными алгоритмами первого порядка. Источник: NeurIPS 2024.

Математики сравнили, как быстро работают два алгоритма с оракулом порядка: случайный спуск по координатам с оракулом порядка (OrderRCD) и ускоренный спуск по координатам с оракулом порядка (OrderACDM). Они также сравнили их с традиционными неускоренными алгоритмами, такими как случайный спуск по координатам RCD (алгоритм Нестерова) и градиентный спуск GD.

Неускоренные алгоритмы как RCD, так и OrderRCD показали более низкую скорость сходимости по сравнению с градиентным спуском, что подтверждило теоретические выводы российских ученых. Оказалось, что OrderRCD даже превосходит аналогичный метод первого порядка RCD, несмотря на ограничения в использовании оракула. Это связано с тем, что OrderRCD на каждой итерации использует точный шаг в направлении наискорейшего спуска, находя его с помощью метода золотого сечения GRM. Кроме того, оказалось, что ускоренный метод OrderACDM достигает большей скорости сходимости, чем все неускоренные алгоритмы, включая RCD и GD.

Математики отдельно рассмотрели три случая различных видов функций: невыпуклые, выпуклые и сильно выпуклые. Оказалось, что в случае сильно выпуклых функций алгоритм показал линейную сходимость, что позволяет значительно уменьшить количество итераций, необходимых для достижения точности. Кроме того, исследователи рассмотрели случай стохастической оптимизации и показали возможные перспективы для разработки новых стохастических алгоритмов.

«Работа по внедрению концепции порядкового оракула в практику оптимизации — это важный шаг к решению сложных задач, стоящих перед современной наукой о данных и машинным обучением, — рассказал Александр Гасников, заведующий лабораторией математических методов оптимизации МФТИ. — Научное сообщество благодаря этой концепции располагает мощным инструментом, способным обеспечить значительное улучшение в скорости и эффективности оптимизационных процессов». 

Работа по внедрению концепции порядкового оракула в практику оптимизации — это важный шаг к решению сложных задач, стоящих перед современной наукой о данных и машинным обучением. Научное сообщество благодаря этой концепции располагают мощным инструментом, способным обеспечить значительное улучшение в скорости и эффективности оптимизационных процессов.

Авторы не только предложили новые эффективные алгоритмы, но и открыли обсуждения для будущих исследований, связывая их с реальными задачами, такими как ухудшение пользовательского опыта в реактивных системах или настройки в распределенных обучающих средах. Кроме того, в своей работе они предложили практические рекомендации по использованию разработанных ими алгоритмов.

Автор: master_program

Источник

Rambler's Top100