ml.

ml.

Яндекс представляет YaC 2025 AI Edition

Вышел новый YaC AI Edition. По традиции, этим форматом Яндекс подводит итоги года: в нем сотрудники рассказывают про важные запуски от обновленных роботов‑доставщиков до первых ИИ‑агентов, и показывают их в деле. 

продолжить чтение

Поговорим об основах машинного обучения

Различные направления машинного обучения сейчас используются практически везде и порой сложно понять какое направление какие задачи решает. Сегодня мы попробуем разобраться в ключевых особенностях машинного обучения, рассмотрим из каких основных направлений состоит ML и как они используются. Основная цель этой статьи помочь начинающим специалистам разобраться с тем, что из себя представляет машинное обучение.Цель машинного обучения

продолжить чтение

Фильтруем политику и нецензурщину: как в «Эвоторе» защищают клиентский чат

В мире высоких технологий все больше и больше компаний внедряют голосовых и чат‑ассистентов в различные сегменты рабочих процессов. Они помогают обрабатывать рутинные задачи, ускоряют взаимодействие с пользователями и снижают нагрузку на сотрудников. Компания «Эвотор» находится в числе тех, кто активно занимается разработкой ассистента поддержки на базе llm — Евы, которая уже помогает тысячам пользователей ежедневно.

продолжить чтение

Как мы учили поиск понимать контекст: практическое руководство Купера для маркетплейсов

Когда слов недостаточно, поможет семантический поиск на ElasticsearchВ IT-сообществе только и разговоров об эмбеддингах, metric learning, косинусных расстояниях и семантическом поиске. На конференциях все рассказывают про нейросети и векторные пространства. Но если заглянуть под капот и посмотреть, что реально работает в поиске крупных маркетплейсов и e-commerce платформ, то там, как правило, он — добрый, старый полнотекстовый индекс.

продолжить чтение

Система мониторинга ML-моделей: что важно контролировать и почему

«Обучил, запустил и забыл» — плохая стратегия работы с ML‑моделями, но она часто встречается после удачного тестирования. Качество моделей может незаметно снижаться, и если пропустить этот момент — последствия могут дорого стоить. Когда мы начали задумываться о системе мониторинга, одна из наших моделей начала выдавать предсказания, которые требовали незамедлительного вмешательства в выстроенную работу. Но разум подсказывал, что проблема не в процессе, а в модели. О том, каким трудоемким оказалось наше расследование, и как мы восстанавливали и изучали каждую составляющую процесса почти вслепую, читайте по

продолжить чтение

Benchmark Driven Development: почему мы перестали верить чужим бенчмаркам

Каждый день появляются новые LLM, OCR, мультимодальные модели и агенты. В новостях — одни заголовки: «Модель X побила все бенчмарки». Руководство хочет «самое новое и передовое», команда — «самое лучшее по метрикам». А вот как понять, что конкретно для вашего кейса это действительно лучше — обычно не очень понятно.В этой статье расскажем, как мы пришли к подходу, который внутри называем Benchmark Driven Development (BDD) — разработка, движимая бенчмарками на своих данных. (Да, мы знаем, что BDD — это ещё и Behavior Driven Development, тут у нас своя расшифровка 🙂)Задача из практики: документы в одном длинном PDF

продолжить чтение

Нейросетевая модель интересов пользователя: как мы улучшили разнообразие и релевантность рекомендаций на главной Авито

Привет! С вами Ярослав Хныков — senior ML engineer в Авито. В статье расскажу, как мы повысили разнообразие и релевантность рекомендаций на главной странице. Покажу, как появляется выдача с однотипными рекомендациями, чем здесь помогает простой «блендер» категорий и как мы прокачали его с помощью модели интересов пользователя, основанной на трансформерах. В конце — результаты A/B-тестов, метрики и рекомендации, которые вы сможете забрать к себе в продукт.Статья будет особенно интересна специалистам, которые работают с рекомендательными системами.

продолжить чтение

Реализуем компьютерное зрение на практике

На тему компьютерного зрения есть множество различных публикаций, которые в основном рассказывают о применении этой технологии в разных отраслях. Однако, зачастую публикации содержат лишь общую информацию о том, что реализовано и для каких задач, но при этом отсутствует описание того, как это можно сделать.В нашей статье мы поговорим о том, как можно реализовать на Python навигационную систему на основе машинного зрения для автономных транспортных средств, проанализировать медицинские изображения и выполнить генерацию новых изображений из набора данных уже существующих.

продолжить чтение

Изоляция контекста через субагенты: архитектурный паттерн для долгосрочной работы с Claude Code

Как превратить Claude Code из мощного ассистента в профессиональную платформу оркестрации с 33+ специализированными агентамиКонтекст: кто пишет и почему это важноИгорь Масленников. В IT с 2013 года. Много лет управлял классической IT-компанией DNA IT. Последние два года активно развиваю подразделение AI Dev Team — и вижу интересную тенденцию: всё больше клиентов выбирают именно это подразделение. Не потому что модно, а потому что быстрее (1-2 недели вместо 2-3 месяцев), дешевле (минус 80% от стоимости), и, как ни странно, качественнее благодаря автоматическим проверкам.

продолжить чтение

Как я программирую с помощью агентов

TL;DRАгент в контексте LLM — это не магия, а цикл, в котором модель по шагам вызывает инструменты (bash, git, тесты, web) и получает от них обратную связь.Такой агент умеет ориентироваться в живой кодовой базе, запускать компилятор и тесты, читать логи и документацию, поэтому генерирует и правит код куда надёжнее, чем «голая» модель в чате.

продолжить чтение

123456...1020...36
Rambler's Top100