Как построить безопасный MLOps-pipeline: Tier-уровни зрелости, принципы и реальные инструменты
Модели машинного обучения (ML) становятся ключевой частью современных продуктов и сервисов, и вопросы их безопасной разработки выходят на первый план. Однако на практике у многих команд нет понимания, как именно выстраивать защиту — на каких этапах, с помощью каких инструментов и против каких угроз.Меня зовут Александр Серов, я ведущий специалист по безопасности больших языковых моделей в Swordfish Security. В этой статье я покажу, как подходить к безопасности ML-систем системно — через уровни зрелости, жизненный цикл моделей и реальные практики.