boosting.

XGBoost альтернатива CatBoost для работы с категориальными данными???

Кратко:22 сентября 2025г. вышла версия 3.10 XGBoost. Основной фишкой новой версии стал "категориальный ре-кодер(categorical re-coder)". Он сохраняет категории в модели и так же может перекодировать данные на этапе инференса. И целью этой статьи является сравнить возможности новой версии XGBoost c лидером обработки категориальных данных, CatBoost.Основные вопросы:Кто обучает на сырых данных?Что такое этот категориальный ре-кодер?Можно ли обучить модель полностью на сырых данных и получить приемлемый результат?

продолжить чтение

Вся суть ансамблей на примере Случайного Леса и Градиентного Бустинга

Введение Изучая классическое машинное обучение, я постоянно натыкался на парадокс: материалов много, а интуитивно понятных объяснений, почему ансамбли — это так мощно, на удивление мало.Я хочу это исправить. В этой статье мы разложим по полочкам саму концепцию ансамблей. А затем по логике ансамблей разберем двух "королей" этого подхода: Случайный Лес и Градиентный Бустинг.Концепция ансамблей в машинном обучении Ансамбли - это такая парадигма машинного обучения, в которой несколько слабых моделей обучаются решать одну задачу, и объединяются чтобы получить лучшие результаты.

продолжить чтение

Rambler's Top100