Умный Early Stopping: обучаем нейросети, анализируя тренд, а не шум
Привет, Хабр! Каждый, кто обучал нейронные сети, знаком с механизмом Early Stopping. Этот механизм останавливает обучение, когда метрика перестаёт улучшаться, экономя время и предотвращая переобучение. Классическая реализация проста и понятна, если loss на валидации не улучшается в течение N эпох мы останавливаемся и сохраняем лучшую модель. Проблема классического подхода: реакция на шумЛандшафт функции потерь редко бывает идеально гладким. В процессе обучения loss может немного дрожать - незначительно расти на пару эпох, а затем находить новую, еще более глубокую долину.
Нейросети для семантической сегментации: U-Net, LinkNet, PSPNet
Всем привет! Недавно я закончил один из этапов собственного проекта, в котором я провел сравнительный анализ 3 одних из самых известных нейросетей для семантической сегментации: U-Net, LinkNet, PSPNet. Теперь я хочу поделиться со всеми, чтобы в случае, если кто-то захочет сделать что-то подобное или ему просто понадобится, то он не искал весь интернет, как я, а легко и просто все нашел. В конце главы каждый нейросети я оставил ссылки на оригинальные статьи для желающих самостоятельно все изучить (на английском). Ссылка на мой GitHub с полноценной версией всех нейросетей и main файла в конце статьи.

