RLM-Toolkit v1.2.1: Теоретические основы и оригинальные разработки
Научное исследование архитектурных решений в контексте теории информации, криптографии и когнитивных систем📌 Это продолжение статьи RLM-Toolkit: Полное руководство по обработке 10M+ токеновПервая часть охватывала практические аспекты. Здесь — глубокий теоретический анализ: от теории Шеннона до когнитивной архитектуры памяти.АннотацияНастоящая работа представляет комплексный анализ архитектурных решений RLM-Toolkit v1.2.1, разработанного в рамках проекта SENTINEL AI Security Platform.Мы демонстрируем:Криптографическую необходимость
Собираем LLM-агента на Python
Команда Python for Devs подготовила перевод статьи о том, как с помощью middleware в LangChain 1.0 собирать LLM-агентов, готовых к реальному продакшену. В материале разбираются практические паттерны: управление контекстом, защита PII, human-in-the-loop, планирование задач и интеллектуальный выбор инструментов — всё то, что отличает экспериментального агента от надёжного рабочего решения.Введение Хотели ли вы когда-нибудь расширить своего LLM-агента дополнительными возможностями, например:Суммировать сообщения, чтобы укладываться в контекстное окно;
Я реализовал паттерн памяти из OpenAI Cookbook в Python библиотеку
Я создал agent-memory-state — open-source Python библиотеку для управления персистентной памятью AI агентов. Реализует паттерн state-based memory из OpenAI Cookbook: профиль пользователя, разделение session/global памяти, LLM-консолидация и защитные механизмы.Проблема: Агенты без памяти — безликиеКаждый раз, начиная новый разговор с AI-ассистентом, он забывает всё. Ваши диетические предпочтения, привычки в путешествиях, рабочий контекст — стёрты. Приходится объяснять одно и то же снова и снова.
Как 17-летний писал RAG-алгоритм для хакатона AI for Finance Hack: ретроспектива
Привет, Хабр! Мой путь в мире IT официально начался относительно недавно: в октябре 2025 года. До этого программирование вообще не выходило за рамки увлечений. Но однажды я решил испытать удачу и выйти на тропу приключений, после которой я уже не вернулся прежним...
История о том как «Очень хочется, но ты зеленый»
Акт 1. Сбор и анализНачало 2024 года. Я работаю сис.админом в группе тех. поддержке пользователей. В свободное время на работе сижу что-то читаю о сетях, и информационной безопасности. Параллельно развернул Zabbix, настроил дашборды и ничего не предвещало беды. Но тут меня посетила идея, что мне нужен какой-то проект связанный с искусственным интеллеком. Загорелся я этим очень сильно, и решил что я должен что-то сделать!
Агентные системы для продакшена
Всем привет! Сегодня разберём, как проектировать агента, который доезжает до продакшена и приносит пользу бизнесу: от вопросов на старте до стека и практик, без которых он развалится в эксплуатации.Меня зовут Владимир, на данный момент работаю ML-инженером и разрабатываю мультиагентные системы. К сожалению, пока не могу похвастаться тем, что сократил 20 процентов сотрудников, но достижения имеются...
Тестирование LLM-приложений с DeepEval
Всем привет! Меня зовут Максим. Я NLP‑инженер в red_mad_robot и автор Telegram‑канала Максим Максимов // IT, AI. В этой статье я расскажу о том, как тестировать приложения с использованием Large Language Model (LLM), на примере инструмента DeepEval. Тестирование приложений, в которых используются LLM, отличается от тестирования других приложений. В частности, можно выделить 2 основные проблемы: Недетерминированность. В связи со своей спецификой LLM могут давать разные ответы на одни и те же запросы, что создаёт сложности во время тестирования;Работа с естественным языком.
Claude Code изнутри: как устроены AI-агенты для разработки
Команда AI for Devs подготовила перевод статьи о том, как на самом деле устроены AI-агенты для программирования. Автор шаг за шагом показывает, что за Claude Code не стоит магия: это последовательный агентный цикл, инструменты, контроль разрешений и работа с контекстом.Что делает Claude Code мощным, на удивление просто: это цикл, который позволяет ИИ читать файлы, запускать команды и итеративно работать, пока задача не будет выполнена.Сложность начинается там, где нужно разрулить пограничные случаи, сделать хороший UX и встроиться в реальные процессы разработки.
Больше чем ядро: как пет-проект вырос в мультитенантную платформу для создания AI-агентов
СодержаниеПролог. Краткость - сестра таланта... Часть 1. Концепт Часть 2A. Вайб-кодинг: философия и инструменты Часть 2B. Вайб-кодинг: практика взаимодействия Часть 3. Архитектура: первый блин комом Часть 4. Релиз и фичи Часть 5. Закат и рассвет Часть 6. Мультитенантная архитектура Часть 7: Сценарии — декларативная магия Часть 8. Эволюция системы плагинов: от модулей к экосистеме

