Топ-3 ML-модели для продуктовой аналитики
В продуктовых исследованиях часто встаёт вопрос — как не просто описывать поведение пользователей, а управлять им: понимать, кто уйдёт в отток, кто готов к апсейлу, а кому стоит предложить скидку или новую фичу. ML-модели позволяют формализовать закономерности в данных и прогнозировать, как конкретный пользователь поведёт себя в будущем или как изменится его поведение под воздействием наших действий.В этой статье я собрал три типа моделей, которые часто используются в решении таких задач. Первая
Машинное обучение и резервы банка: опыт из ФинТеха
Оценка резервов кредитного портфеля — одна из задач, с которой я работал на протяжении продолжительного времени в своей практике. Это интересная и сложная задача, о которой я расскажу.В этой статье я расскажу о том, что такое резервы и зачем они необходимы банкам, как банки проводят оценку резервов, а также где в этой задаче можно использовать машинное обучение.Что такое резервы?Резервы, или ожидаемые кредитные потери (ECL

