Трансформеры для персональных рекомендаций на маркетплейсе: от гипотез до A-B-тестирования
Всем привет! На связи Ваня Ващенко, и я лид по развитию нейросетевых моделей в команде персональных рекомендаций Wildberries. Раньше я развивал B2C-рекомендации и нейросети кредитного скоринга в крупнейшем банке, а теперь вы видите результаты работы нашей команды каждый раз, когда заходите на главную страницу любимого маркетплейса. Сегодняшний рассказ — о том, как мы развиваем WildBERT.WildBERT основан на классической архитектуре Bidirectional Encoder Representations from Transformers (BERT), улучшенной под задачи и проблемы, с которыми сталкивается маркетплейс. Скорее, это не одна конкретная модель, а концепция, которую мы применяем в разных процессах:
Cryfish: Как научить большую языковую модель слышать и понимать звуки?
В мире искусственного интеллекта господствуют большие языковые модели (LLM, large language models). GPT и ее аналоги прекрасно справляются с написанием текстов, кода и генерацией картинок. Но что насчёт звука? Умение слушать и понимать аудио — это следующий логический шаг на пути к многомодальным системам.Сегодня мы расскажем вам о Cryfish — модели на основе LLM, которая не только читает, но и слышит. Мы разберём, как заставить LLM понимать речь, музыку, эмоции и бытовые шумы, и расскажем о сложностях, с которыми столкнулись при обучении.
Нужно ли аналитику данных машинное обучение — и как его освоить
Нужно ли аналитику машинное обучение? Ответ неоднозначный: всё зависит от места работы и планов в профессии.Меня зовут Раф, я аналитик ценообразования в Авито (а раньше в Яндекс Лавке), преподаватель машинного обучения в Центральном университете, выпускник факультета компьютерных наук в НИУ ВШЭ и курса «Специалист по Data Science» в Яндекс Практикуме. В этой заметке я расскажу, зачем аналитику машинное обучение, когда без него можно обойтись и как его освоить, если этого потребуют задачи.
AI Routing Lab: машинное обучение для оптимизации сетевых маршрутов
Статья подготовлена в рамках исследовательского проекта CloudBridge Research, посвященного применению ML для оптимизации сетевых протоколов.Проект: github.com/twogc/ai-routing-labВы, возможно, помните наши предыдущие статьи, где мы рассказывали, как выжимали максимум из сетевых протоколов (BBRv3, FEC и QUIC) и строили инструменты для их тестирования (quic-test).Мы долго бились над тем, чтобы ускорить передачу данных на одном
Как я собрал и подготовил датасет дефектов печатных плат для обучения моделей YOLO
Когда пришло время выбирать тему диплома, я, как и многие студенты, понятия не имел, о чём писать. После мозгового штурма с одногруппниками родилась идея, которая из простого «варианта для защиты» превратилась в полноценный инженерный проект: «исследование и разработка системы автоматического распознавания дефектов печатных плат». Со временем я понял, что выбрал тему не случайно - это реально актуальная задача для производства, где качество пайки напрямую влияет на работоспособность устройств, а ещё отличный шанс пройти весь цикл Computer Vision проекта от сбора данных до обучения моделей.
AI-инструменты 2025: Полный технический анализ Perplexity, ChatGPT, Gemini и DeepSeek
🎯 Резюме: Кто лучше?ИнструментОценкаСильная сторонаPerplexity AI4.20/5Точность + RAG архитектураChatGPT3.85/5MoE + GPT-4o мультимодальностьDeepSeek3.75/5MoE эффективность + бесплатноGemini3.35/5Контекст 1M + видео обработка
Профессия ML-инженер: как кошка съела акулу и почему ИИ должен дружить с БД
В любой крупной компании данных всегда больше, чем понимания, что с ними делать. Они лежат в базах, логах, документах — огромный слабоструктурированный ресурс. Идея о том, что можно научить машину находить в этом хаосе полезные паттерны, когда-то казалась фантастикой, а сегодня это работа руководителя отдела машинного обучения Postgres Professional Савелия Батурина. Вместе с коллегами он на практике связывает мощь языковых моделей с СУБД, чтобы извлекать из данных реальную пользу, рассказывать, по каким граблям для этого пришлось пройти.
Momentum Attention: когда внимание получает инерцию
В классическом self-attention каждый токен смотрит на другие токены, чтобы понять, что важно в данный момент.Внимание распределяется мгновенно:Именно этот механизм сделал трансформеры тем, чем они стали.Но вот в чём проблема - внимание не имеет памяти.
Умный Learning Rate Scheduler: Управляем скоростью обучения, анализируя ускорение
Мы привыкли использовать ReduceLROnPlateau если val_loss не улучшается N эпох подряд - режем learning_rate. Это работает. Мы ждем, пока обучение врежется в стену, и только потом реагируем.А что, если мы могли бы увидеть эту стену заранее? Что, если бы мы могли сбросить скорость плавно, еще на подходе к плато, и снова нажать на газ, если впереди откроется новый спуск?Я хочу поделиться концепцией умного LR шедулера, который управляет скоростью обучения, анализируя не сам loss, а скорость его изменения.Проблема ReduceLROnPlateau: Мы реагируем на симптом, а не на причину

