Когда YOLO не спасает: как один параметр может испортить всё
История о том, почему в ML побеждают не те, у кого самая большая модель, а те, кто понимает, что они делают.ВведениеСовременные object detection-модели достаточно мощные, чтобы «из коробки» выдавать приемлемую точность. Особенно если задача выглядит простой — например, определить, где на покерном столе лежат карты.Но «приемлемо» и «надёжно» — не одно и то же.В одном из проектов заказчик обучил модель, которая показывала 93% точности на валидной выборке, но на практике её приходилось постоянно подчищать вручную. Модель теряла карты в нужных моментах, срабатывала на графику трансляции и мешала, а не помогала аналитике.
BM YOLO: что, если вам не нужно умножать, чтобы распознавать?
Современные технологии глубокого обучения проникают в самые разные области нашей жизни — от автономных автомобилей до систем видеонаблюдения. Однако высокая вычислительная сложность традиционных нейронных сетей остается серьёзным препятствием на пути к их широкому применению на мобильных устройствах и встраиваемых системах.Группа исследователей из Smart Engines представила
Эволюция архитектур нейросетей в компьютерном зрении: детекция объектов
Всем привет! Это завершающая статья в серии по эволюции архитектур нейронных сетей в компьютерном зрении. Она будет полезна тем, кто только погружается в сферу и пробует систематизировать свои знания, поэтому я осознанно не погружаю читателей в глубокие расчеты и вычисления. Посмотрим на R‑CNN, Fast R‑CNN, Faster R‑CNN, Mask R‑CNN, SSD, RetinaNet, EfficientDet, YOLO.

