Когда YOLO не спасает: как один параметр может испортить всё
История о том, почему в ML побеждают не те, у кого самая большая модель, а те, кто понимает, что они делают.ВведениеСовременные object detection-модели достаточно мощные, чтобы «из коробки» выдавать приемлемую точность. Особенно если задача выглядит простой — например, определить, где на покерном столе лежат карты.Но «приемлемо» и «надёжно» — не одно и то же.В одном из проектов заказчик обучил модель, которая показывала 93% точности на валидной выборке, но на практике её приходилось постоянно подчищать вручную. Модель теряла карты в нужных моментах, срабатывала на графику трансляции и мешала, а не помогала аналитике.

