Эффективный инференс множества LoRA адаптеров
LoRA — популярный метод дообучения больших моделей на небольших датасетах, однако на этапе инференса низкоранговые адаптеры работают неэффективно, а их объединение с весами требует хранения отдельной полной копии модели для каждого адаптера. MultiLoRA решает эту проблему, позволяя одновременно выполнять инференс с несколькими адаптерами на основе одной базовой модели. В статье мы сравним производительность MultiLoRA-инференса в двух популярных фреймворках — vLLM и TensorRT-LLM