Трансформеры для персональных рекомендаций на маркетплейсе: от гипотез до A-B-тестирования
Всем привет! На связи Ваня Ващенко, и я лид по развитию нейросетевых моделей в команде персональных рекомендаций Wildberries. Раньше я развивал B2C-рекомендации и нейросети кредитного скоринга в крупнейшем банке, а теперь вы видите результаты работы нашей команды каждый раз, когда заходите на главную страницу любимого маркетплейса. Сегодняшний рассказ — о том, как мы развиваем WildBERT.WildBERT основан на классической архитектуре Bidirectional Encoder Representations from Transformers (BERT), улучшенной под задачи и проблемы, с которыми сталкивается маркетплейс. Скорее, это не одна конкретная модель, а концепция, которую мы применяем в разных процессах:

