Трансформеры для персональных рекомендаций на маркетплейсе: от гипотез до A-B-тестирования
Всем привет! На связи Ваня Ващенко, и я лид по развитию нейросетевых моделей в команде персональных рекомендаций Wildberries. Раньше я развивал B2C-рекомендации и нейросети кредитного скоринга в крупнейшем банке, а теперь вы видите результаты работы нашей команды каждый раз, когда заходите на главную страницу любимого маркетплейса. Сегодняшний рассказ — о том, как мы развиваем WildBERT.WildBERT основан на классической архитектуре Bidirectional Encoder Representations from Transformers (BERT), улучшенной под задачи и проблемы, с которыми сталкивается маркетплейс. Скорее, это не одна конкретная модель, а концепция, которую мы применяем в разных процессах:
Как прошел RecSys Meetup? Рассказываем об ивенте и делимся записями докладов
Привет! 28 августа прошел RecSys Meetup — поговорили о том, как работают рекомендательные алгоритмы Wildberries & Russ: от блока «вам может понравиться» до сложных моделей, влияющих на выдачу товаров.В программе было четыре интересных доклада, классный мерч и полезный нетворкинг. В статье вы найдете видеозаписи с ивента и фотоотчет :)Доклад «Трансформеры в персональных рекомендациях: от гипотез до AB-тестирования» — Иван Ващенко, DS Team Lead в команде персональных рекомендаций Wildberries & Russ
ReLLaX: как научить большие языковые модели понимать долгосрочное поведение пользователей
Всем привет! Меня зовут Никита Горячев. Сейчас работаю в качестве Senior Machine Learning Engineer в WB Tech - занимаюсь исследованиями в рекомендациях и LLM. До этого работал в МТС и Сбере, где тоже занимался рекомендашками. Написал книгу про LLMOps и RAG, также сейчас пишу книгу про вывод Speech AI моделей в прод. Хочу поделиться разбором интересной статьи, которую нашел у коллег из Китая!
LARM: как мультимодальные LLM меняют рекомендации для live-стриминга
Рекомендательные системы уже давно стали привычной частью нашей жизни — от Netflix до YouTube и TikTok. Но есть один особый формат контента, где классические подходы начинают буксовать — живые трансляции (live-streaming).
Semantic Retrieval-Augmented Contrastive Learning (SRA-CL) для sequential рекомендательных систем: обзор
👋 Привет, Хабр!Меня зовут Никита Горячев, я Research Engineer в WB, последние несколько лет работаю на стыке RecSys, LLM и мультимодальных моделей. Каждый день мы обрабатываем миллиарды событий, а модели, которые мы внедряем, напрямую влияют на CTR, удержание и конверсию, принося немало дополнительной выручки.До этого я успел поработать в AI-стартапе в Palo Alto, где занимался голосовыми агентами (ASR/TTS), и в МТС, где мы строили AI-экосистему. Ранее в Сбере я занимался созданием единого RecSys SDK для всей экосистемы (от SberMegaMarket до Okko и Zvuk), а ещё раньше — развивал персонализацию и ML в ритейле.
RecSys + DSSM + FPSLoss is all you need
Упрощать и искать похожие детали, очень полезный навык! Предлагаю быстро пробежаться и попробовать найти ту самую серебряную пулю в RecSys !Введение
Спикеры AiConf 2025 получат бонусы
Представьте недалёкое будущее. ИИ везде и во всём помогает человеку. Коллеги разговаривают в офисе перед обедом. Автоматическая кухня на основе их предпочтений, интенсивности тренировок, особенностей повседневной жизни и эмоционального состояния готовит им подходящий набор блюд. Виртуальные помощники отбирают и сообщают только нужные и полезные новости, а рабочие консультанты суммаризируют данные по проектам и выстраивают прогноз занятости и нагрузок. Коллеги ведут неспешный small talk, чтобы отвлечься от рабочего процесса.—
От данных к действиям: как мы создавали рекомендации на главной странице Uzum Market
Меня зовут Фарит, я ML-инженер в команде рекомендаций Uzum Market. Сегодня я расскажу, как мы с нуля разработали персональные рекомендации для главной страницы нашего маркетплейса. Мы разберем архитектуру системы, используемые алгоритмы и способы измерения успеха проекта.

