data science.

Оптимизация маршрутов доставки заказов маркетплейса или как мы победили в E-CUP 2025

Хабр, привет! Недавно завершилось ML-соревнование E-CUP 2025. Наша команда из X5 Tech заняла первое место в треке «Логистика: автопланирование курьеров», где было нужно оптимизировать время, затрачиваемое курьерами на доставку 20 000 заказов. В статье расскажем про подходы, которые использовали для решения этой задачи. Посмотрим, во сколько раз можно сжать JSON с матрицей расстояний. Какой код мы использовали для быстрого решения задачи TSP с помощью LKH-3. Обсудим, на что обращать внимание при кластеризации заказов.Постановка задачи

продолжить чтение

Ред флаги, но не в тиндере: что важно понять data-специалисту ещё до оффера

Пятничный вечер, бар, шумные разговоры. Мы - компания из нескольких ML-инженеров, DE и DA из Сбера, Магнита, Озона и Альфа-Банка собрались не ради обсуждения задачек в JIRA. Разговор зашел о наболевшем: как найти своих людей и команду мечты? Обсудили зарплату и плюшки, удалёнку и офис, стартапы и зрелые продукты, переработки, карьерный рост и рабочую культуру. В статье - цитаты из обсуждения и обобщённые выводы. А в конце - список вопросов, которые стоит задать на собеседовании, чтобы не ошибиться с выбором и найти тех людей, с кем не страшно будет выкатить релиз в пятницу вечером.

продолжить чтение

Автоматизированные системы мониторинга моделей машинного обучения с помощью нашего open source фреймворка

Привет! Меня зовут Владимир Суворов, я Senior Data Scientist в Страховом Доме ВСК и core-разработчик нашей библиотеки машинного обучения OutBoxML. Ссылки на наш проект на

продолжить чтение

Покоряем гору временных рядов: делаем прогноз для 200+ рядов с библиотекой Etna

Я работаю дата-сайентистом 5 лет и до сих пор испытываю боль, когда нужно сделать MVP по временным рядам. Начиная с того, как построить несколько графиков одновременно без «слипшихся» меток по осям, заканчивая поиском подходящего метода очистки ряда от аномалий. И всё это венчает цикл по каждому ряду с бесконечным жонглированием данными между numpy, pandas, sklearn, yet_another_library.

продолжить чтение

Как 17-летний писал RAG-алгоритм для хакатона AI for Finance Hack: ретроспектива

Привет, Хабр! Мой путь в мире IT официально начался относительно недавно: в октябре 2025 года. До этого программирование вообще не выходило за рамки увлечений. Но однажды я решил испытать удачу и выйти на тропу приключений, после которой я уже не вернулся прежним...

продолжить чтение

Титаник глазами новичка в 2026

Всем привет! В этой небольшой статье хочу поделиться своим первым опытом работы с ML-моделями. С чего все началось?В начале 3 семестра я попал на проект ВУЗа, связанный с НС. Прошел курс по сеткам, пробежался по Pytorch и приступил к задачам на проекте. В процессе своего спринта решил параллельно изучать классический ML, где собственно выяснил, что "Hello world!" в мире машинного обучения является работа с датасетом титаник (предсказать выжил ли пассажир или нет). После этого ознакомился с Kaggle и полетел!Titanic - Machine Learning from DisasterПри открытии "компетитив" сразу же наткнулся на тот самый

продолжить чтение

AiConf 2026: нам нужен именно ты! Что нового?

Привет, трудяга! На носу одно из самых волнующих мероприятий этой весны — AiConf 2026, которое традиционно проходит в Москве. Кто был на наших конференциях, тот знает, что это кладезь полезной информации, нетворкинга и вдохновения.В новом году пришло время перемен: мы проанализировали отзывы и предложения наших участников, докладчиков и партнёров, и пришли к выводу, что AiConf 2026 года будет другой. С этого момента AiConf становится конференцией развития.

продолжить чтение

Типология мышления в аналитической культуре больших языковых моделей (Часть_1)

Миронов В.О., Кальченко С.Н.

продолжить чтение

Взгляд разметчика данных

Дисклеймер: ниже будет описан личный опыт и точка зрения человека-исполнителя. Устройство всей процедуры разметки в статье не раскрывается. Все совпадения сущностей случайны. Названия компаний не упоминаются в целях соблюдения NDA. В статье не будут подниматься вопросы оплаты труда и разбираются только основные рабочие моменты. Всем добрый день!

продолжить чтение

Детектор AI-сгенерированных изображений: от идеи до честной оценки качества

Всем привет! Меня зовут Татьяна Кутузова, я работаю в Wildberries & Russ ML-инженером. Вместе с Иваном Горбуновым и Елисеем Мягких мы занимаемся разработкой AI-детектора изображений, который помогает отличать реальные фотографии от сгенерированных нейросетями. В этой статье рассказываем, как мы подошли к созданию AI-детектора: от выбора архитектуры и данных до продуктовых границ и сценариев применения. Отдельное внимание уделяем тому, как в таких задачах корректно оценивать качество модели, какие метрики имеют смысл и почему их интерпретация не менее важна, чем сами числа.

продолжить чтение

123456...10...12
Rambler's Top100