kubeflow.

Как мы готовили Kubernetes под ML-нагрузки: пошаговый гайд (и что пошло не так)

Привет! Я Дмитрий, инженер и руководитель направления MLOps в Совкомбанке. Специализируюсь на разработке и эксплуатации ML-платформ на базе Kubernetes и GPU. С 2010 года в ИТ: строю инфраструктуру для машинного обучения, внедряю Kubeflow и GPU-оператор, настраиваю MIG на H100 в корпоративных средах с повышенными требованиями к безопасности и надежности. В последние годы фокусируюсь на оптимизации ML-пайплайнов, повышении утилизации GPU (включая MIG-профили) и интеграции MLOps-практик в процессы продуктовых команд.

продолжить чтение

MLOps — дитя DevOps и ML

literally meОдин ML-проект в проде вам или два другому? Внедрение машинного обучения в производственную среду остаётся одной из главных проблем индустрии. По статистике, 80% ML-проектов

продолжить чтение

Rambler's Top100