site15.

Моя RAG-система: как я за 8 дней собрал RAG для своего сайта визитки

За 8 дней частичной занятости я собрал RAG-систему на NestJS + PostgreSQL (pgvector), которая обрабатывает ~11 000 чанков документов. Первая версия отвечала около 4 минут, после оптимизации - 40–60 секунд. Главный вывод: RAG - это не «векторный поиск + LLM», а в первую очередь подготовка данных, фильтрация контекста и аккуратная работа с промптами.Зачем я это делалГлавной целью проекта было создать RAG-систему, которая могла бы отвечать на вопросы на основе моих знаний и опыта, это позволило понять реальную работу с большим количеством документов.RAG-система была интегрирована с моим сайтом-визиткой

продолжить чтение

Rambler's Top100