rag.
Моя RAG-система: как я за 8 дней собрал RAG для своего сайта визитки
За 8 дней частичной занятости я собрал RAG-систему на NestJS + PostgreSQL (pgvector), которая обрабатывает ~11 000 чанков документов. Первая версия отвечала около 4 минут, после оптимизации - 40–60 секунд. Главный вывод: RAG - это не «векторный поиск + LLM», а в первую очередь подготовка данных, фильтрация контекста и аккуратная работа с промптами.Зачем я это делалГлавной целью проекта было создать RAG-систему, которая могла бы отвечать на вопросы на основе моих знаний и опыта, это позволило понять реальную работу с большим количеством документов.RAG-система была интегрирована с моим сайтом-визиткой
Как создать чат-бота с LLM?
Это уже четвертая часть статей по разработке AGI, и в предыдущих частях мы обсуждали теоретические и философские аспекты тех или иных вопросов, с ними всегда можно ознакомиться здесь. Сегодня же речь пойдёт о практике.Что получилось в иогеА зачем?
RLM-Toolkit: Полная замена LangChain? FAQ часть 2
Продолжение статьи о RLM. Первая часть: Почему ваш LLM-агент забывает цельО чём эта статья?В первой части я разобрал 10 проблем LLM-приложений и как RLM их решает. Но остался очевидный вопрос:"Чем это отличается от LangChain? Зачем ещё один фреймворк?"Короткий ответ: RLM-Toolkit — это пока не полная замена LangChain. Не весь запланированный функционал реализован, но в своей нише (огромный контекст, H-MEM память, безопасность, InfiniRetri, самоулучшающиеся агенты) — уже конкурент и опережает в вопросах развития под современные задачи.
RLM-Toolkit v1.2.1: Теоретические основы и оригинальные разработки
Научное исследование архитектурных решений в контексте теории информации, криптографии и когнитивных систем📌 Это продолжение статьи RLM-Toolkit: Полное руководство по обработке 10M+ токеновПервая часть охватывала практические аспекты. Здесь — глубокий теоретический анализ: от теории Шеннона до когнитивной архитектуры памяти.АннотацияНастоящая работа представляет комплексный анализ архитектурных решений RLM-Toolkit v1.2.1, разработанного в рамках проекта SENTINEL AI Security Platform.Мы демонстрируем:Криптографическую необходимость
Почему корпоративные знания не работают — и как это исправит ИИ
В каждой крупной компании со временем накапливается огромное количество ценной информации — инструкций, регламентов, технологических карт, аналитических отчетов. Однако в большинстве случаев эти данные висят «мертвым» грузом в архивах и папках. Все необходимое где-то есть, но найти вовремя невозможно. Чтобы знания действительно начали работать на бизнес, нужен инструмент, который сможет оперативно доставить их тем, кому они нужны. И именно такую задачу решает ИИ чат-бот на основе технологии RAG (Retrieval-Augmented Generation). Когда знаний много, но они не работают
Как 17-летний писал RAG-алгоритм для хакатона AI for Finance Hack: ретроспектива
Привет, Хабр! Мой путь в мире IT официально начался относительно недавно: в октябре 2025 года. До этого программирование вообще не выходило за рамки увлечений. Но однажды я решил испытать удачу и выйти на тропу приключений, после которой я уже не вернулся прежним...

