вектор.

«Привет! Я [0.44, -0.91, 0.66…]» или как научить машину понимать смысл слов

Я уверен, вы видели модели машинного обучения, которые принимают текст и предсказывают, является ли он спамом. Аналогично модель может проанализировать отзыв о фильме и определить его тональность — положительную или отрицательную, понимать что «груша» связана с «яблоком» куда больше, чем с «теплоходом». Первое правило обучения любой модели машинного обучения — это преобразование входных данных в числа. Любой цифровой объект можно представить как некое число: картинку, текст, аудио или видеофайл — практически всё что угодно.

продолжить чтение

«Привет! Я [0.44, -0.91, 0.66…]» или как научить машину чувствовать смысл слов

Я уверен, вы видели модели машинного обучения, которые принимают текст и предсказывают, является ли он спамом. Аналогично модель может проанализировать отзыв о фильме и определить его тональность — положительную или отрицательную, понимать что «груша» связана с «яблоком» куда больше, чем с «теплоходом». Первое правило обучения любой модели машинного обучения — это преобразование входных данных в числа. Любой цифровой объект можно представить как некое число: картинку, текст, аудио или видеофайл — практически всё что угодно.

продолжить чтение

RepE — как активационная инъекция влияет на энтропию, деградацию и качество ответов LLM?

Современные большие языковые модели достигли впечатляющих результатов в генерации текста, однако они до сих пор остаются жуткой стохастикой. На мой взгляд проблема текущего ИИ заключается не в синтетических обучающих данных или архитектурных ограничениях, а в отсутствии внутренней верификации.

продолжить чтение

Rambler's Top100