Личное облако на Proxmox: нейронки, LLM и embedding
В прошлой статье я описывал как построить сетевую часть самодержавного сервера, пора принести в него что-то отдаленно разумное. Это руководство описывает весь процесс: от подготовки хоста Proxmox и настройки LXC-контейнера до поиска, конвертации и запуска embedding-моделей (на примере BAAI/bge-large-en-v1.5) с использованием встроенного Intel iGPU для работы модели. Но будет легко запустить не одну модель или полноценного чатбота на этой основе. Главное, что будет ясно как использовать даже простое имеющееся железо домашнего сервера для этого.
- Оставлено в
La Perf — бенчмарк локального ИИ, или M-серия наносит ответный удар
ИнтроЕсли вам интересен мир ИИ и вы хотите не просто делать fit, predict на удаленной ВМ, а изучать что-то локально, экспериментировать и упрощать себе жизнь, запуская модели прямо на своем девайсе — скорее всего, вам понадобится достаточно мощное железо.Эта статья - попытка ответить на вопрос эффективности железа для популярных AI задач: LLM, VLM, эмбэддинги.Она будет полезна как ML/AI Инженерам, так и просто Энтузиастам, которые выбирают себе железо для локального инференса gpt-oss.TL;DR:M4 Max - лучший по эффективности энергопотребления
- Оставлено в
Собираем простейшую RAG-систему на PHP с фреймворком Neuron AI за вечер
RAG (Retrieval-Augmented Generation или генерация, дополненная поиском) - это метод искусственного интеллекта, сочетающий генеративную большую языковую модель (LLM) с внешней базой знаний для создания более точных, контекстно-зависимых и актуальных ответов. Принцип его работы заключается в том, что сначала извлекается релевантная информация из набора документов или источников данных, а затем эта информация передается в LLM для формирования окончательного ответа. Этот процесс позволяет модели выдавать более точные ответы, менее подверженные “галлюцинациям”, и ее можно обновлять без дорогостоящего переобучения.
Как открытые веса раскрыли секреты обучения GPT-5
Команда AI for Devs перевела статью, показывающую, что открытые веса — это не только про прозрачность, но и про утечку тайн обучения.На примере модели GPT-oss автор показывает, как можно восстановить части обучающего пайплайна и даже выявить, что GPT-5 видела фразы с сайтов для взрослых.Недавно OpenAI выпустила модель с открытыми весами. В этой статье разберём, как этот релиз неизбежно раскрывает часть информации об их обучающем пайплайне — и заодно покажем, что GPT-5 действительно обучалась на фразах с сайтов для взрослых.
Что такое эмбеддинги и как с ними работать. Вводная для начинающих
Всем привет! Меня зовут Максимов Максим, я — NLP‑инженер в компании red_mad_robot. В этой статье я хотел бы рассказать о подходах в работе с векторными представлениями данных, а именно — эмбеддингами. Сегодня в меню: Что такое эмбеддинг? Освежим свои знания, и вспомним что это такое формально.Из чего можно получить эмбеддинги? Рассмотрим популярные форматы данных, которые мы можем представить в векторном виде. Также рассмотрим способы, которым мы можем преобразовать эти данные в эмбеддинг.
- Оставлено в
Отгадай слово дня: от ручного поиска к автоматизации
На прошлой неделе наткнулся на забавную игру в слова – contexto.me, смысл прост: нужно отгадать секретное слово. При этом после каждой попытки видно, насколько близко по смыслу ваше слово было к ответу. Поиграв пару дней, захотелось написать такую игру самому, а также автоматизировать процесс решения, про что и данная статья.Дисклеймер: на хабре есть две публикации про написание подобной игры: одна больше про код, другая
- Оставлено в
Автоматизация поддержки клиентов на основе контекстной близости вопросов
Привет, Хабр!Меня зовут Анатолий, занимаюсь диалоговыми системами и применением Искусственного Интеллекта в бизнесе.Кейсовая задача - предоставить клиентам возможность составлять вопрос на естественном языке, а не искать вопрос в списке FAQ-раздела сайта. При этом система должна выдавать ответ из существующей базы знаний "Вопрос-Ответ" существующего FAQ-раздела.Задача реализована с помощью определения контекстной близости вопросов.Техническая реализация:Все вопросы из базы знаний переводятся в векторные представления (embeddings) с помощью искусственной нейронной сети.
Как мы построили embedding-модель уха на Vision Transformers: от идеи до 88% точности
Пока весь мир гонится за распознаванием лиц и отпечатков пальцев, мы в решили взглянуть на человека чуть сбоку — буквально.
Как я создал Text Extract API для RAG за 2 дня с помощью AI и Cursor: подробный кейс
Разработка с помощью AI‑инструментов меняет подход к созданию ПО. Я сам убедился в этом на практике: всего за два дня мне удалось создать Text Extract API для RAG, используя Claude 4.0, Gemini Pro 2.5 и IDE Cursor. Этот эксперимент показал, что нейросети — уже не просто хайп, а мощный ассистент, способный значительно ускорить процесс разработки.

