Статистика под капотом LinearRegression: почему мы минимизируем именно квадрат ошибки?
Введение Все ML-инженеры знают о линейной регрессии. Это та самая база, с которой начинает изучение алгоритмов любой новичок. Но вот парадокс: даже многие «прожженные» инженеры не всегда до конца понимают ее истинную работу под капотом.А именно — какая у «линейки» статистическая связь с Методом Максимального Правдоподобия (MLE) и почему она так сильно «любит» MSE и нормальное распределение. В этой статье мы как раз в этом и разберемся.Освежаем в памяти Линейную регрессиюЛинейная регрессия это как “Hello world” в мире классического машинного обучения.
Линейная регрессия в факторных моделях
Привет, Хабр!Когда мы говорим «факторная модель», многие вспоминают Python‑ноутбуки. Но если отмотать плёнку, бóльшая часть индустриальных движков для риска и ценообразования десятилетиями писалась на C++ поверх BLAS/LAPACK. Там же удобно делать устойчивые разложения: QR с переупорядочиванием столбцов, SVD, регуляризацию. Библиотеки вроде Eigen дали нормальный интерфейс к этим штукам, и регрессия перестала быть болью «Ax = b» руками. QR с перестановками колонок вообще стандарт для переобусловленных задач.
Линейная регрессия в ML для самых маленьких
В мире машинного обучения есть много всего интересного, но тем, кто только начинает свой путь в этой области часто бывает многое непонятно. В этой статье мы попробуем разобраться с линейной регрессией.
Как прямая помогает обучать машины
В контексте компьютеров, обучение — это всего лишь превращение плохих догадок в более качественные. В этом посте мы увидим, что всё начинается с прямой линии: линейная регрессия даёт первую догадку, а градиентный спуск продолжает её улучшать.Давайте начнём с чего-то близкого нам: цен на недвижимость. Большие дома стоят больше, маленькие — меньше. Подобный паттерн можно заметить даже без анализа: чем больше места, тем дороже.Если создать график цен, то его форма будет очевидной: идущая вверх нечёткая кривая с долей шума, но вполне определённым трендом.

