scikit-learn.

Нейросеть приближается к опыту профессионального дерматолога

Наконец наступило лето, а с ним и пора отпусков. Уезжая на южные моря, не забывайте: большинство из нас имеет типичную для северянина кожу с пониженным содержанием меланина — пигмента, отвечающего за защиту от ультрафиолета. Если кожа отреагировала непонятным новообразованием, вызывающим опасения, теперь можно проконсультироваться с искусственным интеллектом. Он предварительно осмотрит кожу и посоветует, бежать ли ко врачу, за которым, конечно, всегда последнее слово. К слову, данная медицинская ИИ-технология, как и публикация, не является медицинской рекомендацией: диагноз ставит лечащий врач.

продолжить чтение

Главное по ML-DL, часть 2: Вопрос → Краткий ответ → Разбор → Пример кода. SVD-PCA. Bias-variance. Деревья. Бустинг

У каждого наступает момент, когда нужно быстро освежить в памяти огромный пласт информации по всему ML. Причины разные - подготовка к собеседованию, начало преподавания или просто найти вдохновение.Времени мало, объема много, цели амбициозные - нужно научиться легко и быстро объяснять, но так же не лишая полноты!💻 Обращу внимание, самый действенный способ разобраться и запомнить - это своими руками поисследовать задачу! Это самое важное, оно происходит в секции с кодом. Поэтому попробуйте сами решить предложенную задачку и придумать свою!

продолжить чтение

Линейная регрессия в ML для самых маленьких

В мире машинного обучения есть много всего интересного, но тем, кто только начинает свой путь в этой области часто бывает многое непонятно. В этой статье мы попробуем разобраться с линейной регрессией.

продолжить чтение

Scikit-learn теперь умеет в пайплайны: что изменилось и как работать с библиотекой в 2025 году

Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit, predict, score — через sklearn.В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.

продолжить чтение

Гайд по Scikit-learn в 2025: собираем пайплайн, который не сломается

Scikit-learn — это одна из основных Python-библиотек для машинного обучения. Её подключают в прикладных проектах, AutoML-системах и учебных курсах — как базовый инструмент для работы с моделями. Даже если вы давно пишете на PyTorch или CatBoost, в задачах с табличными данными, скорее всего, всё ещё вызываете fit, predict, score — через sklearn.В 2025 году в библиотеку добавили несколько важных обновлений: доработали работу с пайплайнами, подключили полную поддержку pandas API, упростили контроль за экспериментами.

продолжить чтение

Как из аналитики данных перейти в дата-сайентисты

Перевели и дополнили статью Марины Уисс, applied scientist (дата-сайентист со специализацией в прикладной статистике) в Twitch. Когда-то Марина перешла в IT из не связанной с технологиями сферы деятельности, а потом помогла с этим переходом многим людям без IT-бэкграунда.В этой статье она делится советами для дата-аналитиков, которым хотелось бы заниматься data science. А мы добавили мнение экспертов и рекомендации, актуальные для российских образовательных реалий.

продолжить чтение

Как я сделала свой первый AI-продукт с ChatGPT и капелькой любви

В этой статье я расскажу о моем опыте самостоятельного изучения основ Python и Machine Learning и создании первого проекта OneLove на базе собственной модели искусственного интеллекта.Кто я и зачем мне это было нужноМне 51 год, и я работаю тестировщицей в банке. По образованию я экономист. У меня нет особых навыков программирования. Были попытки учить Python и Java, но без практического применения. По работе немного пишу на JS для авто-тестов в Cypress фреймворке, тестирую UI и API — так что базовое понимание, как всё устроено, у меня есть.

продолжить чтение

Рынок труда ML-специалистов в 2025 году: востребованные навыки и карьерные треки

В одном из недавних интервью Марк Цукерберг заявил

продолжить чтение

Решение задачи классификации при помощи Deep Learning и классического Machine Learning

Небольшой бенчмарк (вроде этого): генерируем данные, потом тренируем на них нейросеть (DL - deep learning) и статистические модели (ML - machine learning). Оценивать результат будем по точности (Confusion Matrix) и контурному графику Decision Boundary, а также по времени тренировки. Мы классифицируем синтетические данные тремя способами (на разном количестве данных, от 1000 до 100 000 примеров):DL модель с одним слоем из 8 нейроновSupport Vector ClassifierDecision Tree Classifier

продолжить чтение

Rambler's Top100