MLflow для исследований: как систематизировать ML-эксперименты
ВведениеКогда речь заходит о таких инструментах, как Airflow, MLflow или Docker, многие сразу представляют себе продакшен-среду, и новичков это может пугать. Однако на самом деле эти инструменты полезны не только в проде или крупных компаниях.Сегодня я хочу рассказать об MLflow. Эта статья рассчитана на тех, кто только начинает свой путь в машинном обучении и обладает базовыми знаниями, а также на практикующих ученых в области ИИ, которые пока не знакомы с этим инструментом или сознательно им не пользуются.
Построение инфраструктуры для работы с языковыми моделями: опыт X5 Tech
Привет, Хабр! Я Мичил Егоров, руководитель команды разработки продуктов искусственного интеллекта в X5 Tech. В последнее время языковые модели (LLM) стали неотъемлемой частью многих бизнес-процессов, начиная от чат-ботов и заканчивая автоматической обработкой отзывов клиентов. Однако, чтобы эффективно использовать такие модели, необходима мощная и гибкая инфраструктура. За последний год команда X5 Tech значительно выросла, проверила множество гипотез и протестировала различные модели. Основные кейсы использования включают чат-боты, суфлёры для модераторов, автоматическое резюмирование и обработку отзывов клиентов.

