Прокачиваем RAG: тестируем техники и считаем их эффективность. Часть 2
В прошлой части мы подробно разобрали 11 популярных техник RAG: как они устроены, какие у них есть сильные и слабые стороны, и в каких сценариях они могут быть полезны. Теперь пришло время перейти от теории к практике и посмотреть, как эти подходы показывают себя в деле.В этой статье мы посмотрим на результаты экспериментов: какие техники оказались наиболее эффективными на датасете Natural Questions, где они приятно удивили, а где — наоборот, не оправдали ожиданий. Для оценки будем использовать фреймворк RAGAS, а также метрики BertScore и ROUGE-2
Оценка больших языковых моделей в 2025 году: пять методов
Большие языковые модели (LLM) в последнее время стремительно развиваются и несут в себе потенциал для кардинального преобразования ИИ. Точная оценка моделей LLM крайне важна, поскольку:Компании должны выбирать генеративные AI-модели для внедрения в работу. Базовых моделей LLM сейчас множество, и для каждой есть различные их модификации.
Метрики оценки LLM: полное руководство по оценке LLM
Независимо от того, улучшаете ли вы точность модели путем дообучения или улучшаете контекстную релевантность системы генерации с дополненной выборкой (RAG), понимание того, как разрабатывать и выбирать подходящий набор метрик оценки LLM для вашего варианта использования, является обязательным для построения надежного конвейера оценки LLM.

