Прокачиваем RAG: тестируем техники и считаем их эффективность. Часть 2
В прошлой части мы подробно разобрали 11 популярных техник RAG: как они устроены, какие у них есть сильные и слабые стороны, и в каких сценариях они могут быть полезны. Теперь пришло время перейти от теории к практике и посмотреть, как эти подходы показывают себя в деле.В этой статье мы посмотрим на результаты экспериментов: какие техники оказались наиболее эффективными на датасете Natural Questions, где они приятно удивили, а где — наоборот, не оправдали ожиданий. Для оценки будем использовать фреймворк RAGAS, а также метрики BertScore и ROUGE-2
Прокачиваем RAG: тестируем техники и считаем их эффективность. Часть 1
При проектировании RAG-системы инженер каждый раз сталкивается с множеством вопросов: как получать чанки, какую векторную базу использовать, как организовать получение релевантной информации из базы, да даже выбор эмбеддера может занять приличное время — и это лишь вершина айсберга. Идеальным решением является перебор основных вариантов, затем оценка качества и выбор подходящих для конкретной задачи. Ведь то, что хорошо работает, например, для техподдержки, может провалиться в юридическом анализе, и наоборот.

