sgd.
Нужно ли обучать YOLO с нуля? Практические выводы
Для меня машинное обучение - это прежде всего экспериментальная наука. Выигрывает не тот, кто придумал самую сложную архитектуру, а тот, кто быстрее проходит итерации (анализирует кривые потерь, меняет гипотезы и снова запускает обучение).И именно в этой постоянной гонке я всё чаще задаю себе один и тот же вопрос, а нужно ли вообще обучать модель с нуля?Когда я говорю «обучать с нуля», я имею в виду именно пустые веса. Не fine-tuning и не до обучение, а старт с нулевой инициализацией (PyTorch-модель без пред обученных параметров или YOLO с отключёнными pretrained-весами).
Бинарная классификация: как работает логистическая регрессия
Недавно мне предстояло написать реализацию LogisiticRegression для одного проекта в Школе 21, так что было необходимо разложить всё по полочкам и разобраться в бинарной классификации в целом. Хочу поделиться также этой информацией здесь, потому что не нашла статьи, которая была бы понятна и обширна лично в моём случае. Автор хочет отметить, что только начинает свой путь в машинном обучении. Если в статье найдутся неточности, то с радостью будет их заметить в комментарияхСегодня я бы хотела рассмотреть следующие аспекты:Сигмойдная функцияMLE и NLLРаспределение Бернулли

