Как поднять точность RAG-агента: чек-лист и инструменты. Часть 2. Финал
В первой части я разбирал архитектуру AI-агента, выбор между RAG и GraphRAG на примере AI-юриста для техподдержки. Если пропустили – https://habr.com/ru/articles/975230/Во второй части решил уделить внимание тому, как добиться нормального качества поиска и точности ответов. Чтобы AI-агент не остался в песочнице и не превратился в очередной эксперимент "мы попробовали, не взлетело".Надеюсь мой опыт будет полезен и вы сэкономите себе деньги, нервы и время. А может быть и вовсе откажетесь от идеи создания агента — это тоже нормальный исход.
Хватит дообучать ИИ — дайте ему контекст
Команда AI for Devs подготовила перевод статьи о том, почему Retrieval-Augmented Generation (RAG) чаще всего эффективнее дообучения моделей. Vector, Graph и Agentic RAG помогают ИИ работать точнее, быстрее адаптироваться и учитывать реальный контекст — будь то кодовая база, документация или API. Дообучение же остаётся дорогим и негибким инструментом.

