finetuning.

Finetuning без греха: как кастомизировать AI и не сломать его

Создание кастомной AI-модели для бизнеса кажется простой: скачал базовую модель, загрузил данные — и вот уже готовый AI-юрист или диагност. Но на практике компания часто получает беспомощного «Франкенштейна», который генерирует полную ахинею. Итог — месяцы работы впустую и выброшенный бюджет. В чем же ошибка? Finetuning — это не волшебная палочка для мгновенного результата, а точный хирургический инструмент. Его неверное применение не улучшает модель, а буквально калечит ее.С вами вновь Александр Константинов — технический эксперт из Cloud.ru

продолжить чтение

QTune — open-source решение для быстрого файн-тюнинга моделей

Сегодня я хочу рассказать о своем проекте QTune. Это open-source приложение с графическим интерфейсом, которое превращает сложный и требовательный процесс файнтюнинга в понятный и управляемый процесс, доступный каждому. Это не просто набор скриптов, а полноценная студия, охватывающая весь цикл: от создания датасета до запуска готовой модели локально.Философия простоты: от идеи до модели без единой строчки кодаГлавная идея QTune - предоставить полный контроль над процессом в рамках единого, интуитивно понятного интерфейса. Весь процесс разбит на логические этапы, представленные в виде вкладок в приложении.

продолжить чтение

Text-to-LoRA: мгновенная адаптация трансформеров

😎 Следуй за белым кроликом 💊📌 Telegram @TheWeeklyBrief — краткие обзоры и подкасты 📰🎧🐇📌 GitHub Pages — углублённый разбор статей, ныряем в кроличью нору 📝💻🐾АннотацияИсследователи Sakana AI разработали Text-to-LoRA (T2L)

продолжить чтение

RAG: Дообучение модели эмбеддингов для повышения точности поиска

Привет, Хабр! Меня зовут Саприн Семён. Я занимаюсь анализом данных и машинным обучением в компании ПГК Диджитал. Сегодня мы продолжаем серию статей, в которой я рассказываю о том, как мы с командой разрабатывали ИИ-помощника. В прошлой статье мы обсудили, почему стандартные подходы к работе с документами не всегда работают, и какие шаги помогли нам повысить качество поиска без существенных затрат памяти на GPU.Сегодня речь пойдёт о следующем этапе: дообучении (fine-tuning) модели эмбеддингов

продолжить чтение

Rambler's Top100