Chain-of-Thought.

Общество мыслей: совещание внутри LLM

Общество мыслей: совещание внутри LLMВы наверняка слышали про Chain-of-Thought. "Пусть модель думает вслух, и она станет умнее" — звучит логично, правда? Добавляем "Let's think step by step" в промпт, модель генерирует больше токенов, качество растёт. Почему это работает — долгое время было неочевидно.Но вот что странно: DeepSeek-R1, QwQ-32B и модели серии OpenAI o (o1, o3) показывают результаты, которые невозможно объяснить просто "более длинными рассуждениями". Они решают задачи, на которых обычные модели с Chain-of-Thought спотыкаются. И дело не в размере модели и не в количестве токенов.Исследователи из Google Research и University of Chicago в статье

продолжить чтение

Скрытые сигналы: как модели учатся тому, чего нет в данных

Изображение: Scientific American

продолжить чтение

Скрытая угроза: как LLM заражают друг друга предубеждениями через «безобидные» данные

tl;dr. Мы изучаем сублиминальное обучение

продолжить чтение

«Тупой ИИ» с нами надолго. Почему в новых моделях больше галлюцинаций

В последние несколько месяцев ведущие модели обновились с функцией «рассуждений» (reasoning). Предполагалось, что качество ответов улучшится. Но последующие тесты показали, что уровень галлюцинаций сильно вырос. И это не какая-то случайная недоработка разработчиков, а фундаментальное свойство. Сейчас становится очевидным, что от галлюцинаций мы не избавимся никогда.

продолжить чтение

Rambler's Top100