AI-движки на примере Knowledge Distillation, GAN, Reinforcement learning
Привет хабр! Я хочу поделиться своими наблюдениями и размышлениями на тему работы сеток-дуэтов в современных архитектурах нейросетей.Возьму как пример 3 подхода :Архитектура GAN, основанная на состязательности нейросетейАрхитектура Knowledge Distillation, основанная на совместном обучении и дистилляции Архитектура Reinforcement learning, основанная на последовательной или разделенной обработке 1. GAN - Генеративно - состязательные сети.
Скрытая угроза: как LLM заражают друг друга предубеждениями через «безобидные» данные
tl;dr. Мы изучаем сублиминальное обучение
Академия OpenAI для разработчиков: Разбор 10 лекций про API, RAG, Fine-tuning
OpenAI запустила свою Академию — десятки видеолекций. Полезно, но много. Если вы разработчик или аналитик, которому нужны технические детали и практические руководства по API, моделям и их оптимизации, смотреть всё подряд — не вариант.Я изучил доступные материалы и сделал выжим из только технических материалов. Этот гайд проведет по 10 ключевым лекциям вышедшим на сегодня, которые помогут разобраться в Function Calling, RAG, Fine-tuning, Evals и других важных темах. Мы не будем здесь касаться
Поднимаем DeepSeek llm локально
Все уже слышали про новую модель DeepSeek r1, которая обогнала по бенчмаркам openai. Компания DeepSeek выложила веса и дистилляты в открытый доступ, поэтому мы можем их запустить.В статье поднимем дистилляты модели r1 используя llama.cpp - потребуются лишь базовые умения работы с bash, docker и python. Самостоятельный запуск проще простого.Что имеем?Основная модель, о которой говорят, DeepSeek r1 - 671b Mixture of Experts (37B активаций на forward). Целиком пытаться инференсить такую модель очень затратно.Если очень хочется r1, но не полную - есть квантизации от unsloth.

