ризонинг.

Обзор проблем и решений в ризонинговых LLM. Часть 3

В первой части мы рассмотрели ключевые проблемы логического рассуждения в LLM и показали, в чём именно модели ошибаются.Во второй части узнали, какие существуют методы решения LLM логических задач, а также посмотрели на их сильные и слабые стороны. В этой – мы обсудим, как модели иногда идут вразрез с собственной логикой и что эксперты предпринимают, чтобы это исправить.ЛОГИЧЕСКАЯ СОГЛАСОВАННОСТЬ

продолжить чтение

Обзор проблем и решений в ризонинговых LLM. Часть 2

В первой части мы рассмотрели ключевые проблемы логического рассуждения в LLM и показали, в чём именно модели ошибаются.В этой – мы обсудим методы, с помощью которых LLM решают логические задачи, включая внешние решатели, подсказки и обучение на логических примерах, а также их сильные и слабые стороны.Логическое решение вопросовДля проверки того, как LLM решают логические задачи, мы создали разные тестовые наборы

продолжить чтение

Обзор проблем и решений в ризонинговых LLM. Часть 1

Как-то раз мы со студентами-переводчиками по ИТ задались вопросом: А реально ли LLM «думает»? Или она просто, подобно школьнику, подгоняет объяснения под ответ в конце учебника, не имея ни малейшего понятия, ни о том, правилен ли этот ответ или логичны ли ее рассуждения? Поиски ответов на этот вопрос привели нас к статье-исследованию "Empowering LLMs with Logical Reasoning: A Comprehensive Survey", адаптированный перевод которой мы и предоставляем вашему вниманию. Над переводом мы работали вместе с коллегой – Губановой Екатериной.

продолжить чтение

На START, внимание, марш: как победить галлюцинации и научить LLM точным вычислениям

START — опенсорсная LLM для точных вычислений и проверки кода. В START решены две главные проблемы большинства обычных моделей: галлюцинации и ошибки в многоэтапных расчетах. В статье разберемся, зачем и как именно эти проблемы решены.

продолжить чтение

От генерации к рассуждению: эволюция языковых моделей от GPT до RL

АбстракцияВ контексте стремительного развития больших языковых моделей (LLM) особое внимание уделяется повышению их способности к логическим рассуждениям. Одним из значимых достижений в этой области является модель DeepSeek-R1, разработанная для стимулирования reasoning-способностей LLM с помощью методов обучения с подкреплением (Reinforcement Learning, RL). DeepSeek-R1 представляет собой инновационный подход, направленный на улучшение качества генерации ответов в задачах, требующих многошаговых логических выводов.Основные характеристики DeepSeek-R1DeepSeek-R1 относится к классу reasoning-моделей, таких как OpenAI o1/o3,

продолжить чтение

Rambler's Top100