Часть 3. Обзор технологий RAG для LLM: оптимизация извлеченных данных
Продолжаю адаптированный перевод статьи китайских исследователей Retrieval-Augmented Generation for Large Language Models: A Survey (ссылка на первую часть — здесь, на вторую часть — здесь) Во этой, третьей части авторы совсем кратенько разбирают технологии оптимизации извлеченных данных.После этапа поиска информации не рекомендуется напрямую передавать все полученные данные в LLM для генерации ответов. Оптимизацию предлагается проводить в двух направлениях: корректировка извлечённого контента и
Часть 2. Обзор технологий RAG для LLM: поиск и извлечение информации
Продолжаю адаптированный перевод статьи китайских исследователей Retrieval-Augmented Generation for Large Language Models: A Survey (первую часть см. здесь) Во второй части авторы разбирают технологии оптимизации поиска и извлечения данных. Поскольку материал я готовил в первую очередь для начинающих ИТ-переводчиков, сложные и специальные термины я сопровождал английским переводом и краткими пояснениями в инфобоксах (появляются по наведению курсора). Картинок не было, не обессудьте.
Часть 1. Обзор подходов RAG
Предисловие от переводчикаСпециалисты по RAG и LLM вряд ли найдут что-то новое в этой статье — она больше предназначена для моих коллег, ИТ-переводчиков, которые только погружаются в терминологию языковых моделей. Само содержание статьи (точнее цикла статей) — адаптированный перевод с arxiv.org статьи китайских исследователей Retrieval-Augmented Generation for Large Language Models: A Survey

