llm-архитектура.

ИИ-агенты на рынке недвижимости: эволюция

Всем привет! Меня зовут Алина. На связи снова компания Домклик. Сегодня мы обсудим очень горячую тему этого года — разработку ИИ-агентов. Недавно я выступила с докладом на конференции HighLoad++ 2025, и, думаю, всем будет интересно узнать, как мы создавали ИИ-агентов для рынка недвижимости прошедшим летом. Несмотря на уже существовавшие Transformer-модели, массового интереса вокруг агентов тогда не наблюдалось. Однако в этом году ситуация кардинально изменилась.Эволюция чат-бота до агента-консультанта

продолжить чтение

Искусственный интеллект без иллюзий: как не сжечь бюджет компании на хайпе

продолжить чтение

Как мы сделали аналитику контакт-центра на LLM в 7 раз дешевле

ВведениеМы устали слушать звонки.Не из-за любопытства - просто это занимало слишком много времени.Из 5 минут разговора рождались 20 минут отчёта в Excel, где человек вручную отмечал:«вежлив ли оператор», «упомянул ли цену», «отработал ли возражение».Мы построили систему, которая делает это автоматически:Whisper → QLoRA → отчёт → BI.Она оценивает звонки, считает метрики и не жалуется на переработки.Анализ стоит $0.0003 за звонок, и работает это лучше, чем ожидалось.Но не идеально.вот обновлённый фрагмент раздела 1. “От Excel к первому прототипу”

продолжить чтение

Я «уволил» LLM с должности «мозга» проекта. И его производительность взлетела

(...или почему будущее AI — не в увеличении контекстного окна, а в создании структурированной "памяти")Помните свой первый "вау-эффект" от LLM?

продолжить чтение

Как обмануть LLM: обход защиты при помощи состязательных суффиксов. Часть 1

Что будет, если к опасному запросу в LLM приписать специально подобранную строку токенов? Вместо отказа модель может послушно сгенерирует подробный ответ на запрещённую тему — например, как ограбить магазин. Именно так работают состязательные суффиксы: они заставляют LLM игнорировать ограничения и отвечать там, где она должна сказать «опасно».

продолжить чтение

Как работают серверы MCP: компоненты, логика и архитектура

Закулисный взгляд на основные компоненты серверов MCP — от обработки запросов и управления сессиями до кеширования и хранилищ контекста.Современные ассистенты на базе искусственного интеллекта (ИИ) столь же эффективны, насколько развитыми данными и инструментами они располагают.КДПВ, но в тему

продолжить чтение

Разбираемся с суффиксами квантования LLM: что на самом деле значат Q4_K_M, Q6_K и Q8_0

Привет!

продолжить чтение

Как все рынки мира оказались уязвимы конкуренции с любым умным айтишником

история о том, как в текущем моменте истории, по сути любой разработчик может в одиночку задизраптить любой вертикальный рынок и даже отрасльНовая революция и ее предпосылкиПомимо самого ИИ, который как снег на голову, мы находимся на пороге беспрецедентного передела рынков в бизнесе. Традиционная корреляция между успехом стартапа и созданием рабочих мест ослабевает с каждым днем. AI-native компании будут достигать соответствия продукта рынку (Product Market Fit) быстро с одним основателем, но с более высоким уровнем автоматизации, чем когда-либо прежде. Ок, это про стартапы.

продолжить чтение

Часть 4. Обзор технологий RAG для LLM: аугментация извлеченных данных

Продолжаю адаптированный перевод статьи китайских исследователей Retrieval-Augmented Generation for Large Language Models: A Survey (ссылка на первую часть — здесь, на вторую часть — здесь, третью часть — здесь). В этой, четвертой части авторы совсем скромненько, словно тренировались заполнять налоговую декларацию, разбирают технологии аугментации извлеченных данных.

продолжить чтение

Часть 3. Обзор технологий RAG для LLM: оптимизация извлеченных данных

Продолжаю адаптированный перевод статьи китайских исследователей Retrieval-Augmented Generation for Large Language Models: A Survey (ссылка на первую часть — здесь, на вторую часть — здесь) Во этой, третьей части авторы совсем кратенько разбирают технологии оптимизации извлеченных данных.После этапа поиска информации не рекомендуется напрямую передавать все полученные данные в LLM для генерации ответов. Оптимизацию предлагается проводить в двух направлениях: корректировка извлечённого контента и

продолжить чтение

12
Rambler's Top100