ML на Мосбирже — почему мой грааль не работает?
Время после нового года решил провести с пользой и окунуться в машинное обучение. Заняться Machine Learning — и посмотреть получится что‑то или нет с российским рынком акций на Московской бирже.Моей целью было построить такую систему, которая будет учиться на истории и в перспективе торговать лучше чем случайное блуждание 50/50. Но из‑за комиссий и спреда подобные блуждания изначально отрицательны — чтобы выйти в плюс надо как минимум покрывать комиссии.Если говорить о результатах очень кратко, то технически всё работает, но вот финансовый результат на грани безубыточности.
Как я создал торговую алго-платформу без опыта или почему для одних ИИ — гений, а для других — идиот
Технический разбор процесса разработки торговой платформы с использованием Gemini, Claude и ChatGPT. С настоящими постановками задач, архитектурными проблемами и выводами.Всем привет! Меня зовут Артём, и последние 6 месяцев я создавал полноценную веб-платформу для алготрейдинга. Около 95% кода было сгенерировано c использованием современных LLM, большая часть с помощью Gemini 2.5 Pro, ручные правки составили менее 5%.
Сможет ли языковая модель научиться читать биржевые графики? Эксперимент с LLM на данных Московской биржи
Представьте опытного трейдера: наверняка он не говорит котировками и не рассказывает про индикаторы — он просто говорит «сильный тренд», «пробой уровня» или «ложный отскок». Для него график это язык: свечи, объёмы и уровни складываются в понятные фразы о том, что сейчас происходит на рынке. Именно от этой человеческой интуиции я и отталкивался в своём эксперименте.

