eval.
Парадокс безопасности локальных LLM
Команда AI for Devs подготовила перевод исследования о парадоксе безопасности локальных LLM. Если вы запускаете модели на своём сервере ради приватности, эту статью стоит прочитать. Эксперименты показывают: локальные модели вроде gpt-oss-20b куда легче обмануть, чем облачные а��алоги. Они чаще вставляют вредоносный код, не замечая подвоха, и превращаются в идеальную цель для атак.Если вы запускаете локальную LLM ради приватности и безопасности, эта статья must have. Наше исследование модели gpt-oss-20b (в рамках Red-Teaming Challenge от OpenAI
Хочешь умного агента? Научись оценивать его правильно
В середине 2024 года AI-агенты стали главной темой обсуждений в технологическом сообществе — с помощью них теперь выполняют множество задач от заказа ингредиентов для ужина до бронирования билетов и записи на прием к врачу. Затем появились вертикальные AI-агенты — узкоспециализированные системы, о которых заговорили как о потенциальной замене привычных SaaS-решений. Но по мере роста влияния агентов увеличиваются и риски, связанные с их преждевременным внедрением.

