отравление данных.

Небольшое количество примеров может отравить LLM любого размера

Команда AI for Devs подготовила перевод исследования в котором учёные показали: чтобы встроить «бэкдор» в большую языковую модель, вовсе не нужно контролировать огромную долю обучающих данных — достаточно около 250 вредоносных документов. Этот результат переворачивает представления о масштабируемости атак через отравление данных и ставит новые вопросы к безопасности ИИ.

продолжить чтение

Исследование: 250 вредоносных документов могут вызвать сбой в работе языковой модели с 13 млрд параметров

Специалисты Anthropic совместно с Институтом безопасности ИИ Великобритании, Институтом Алана Тьюринга и другими исследовательскими центрами провели эксперимент, который показал, что всего 250 вредоносных документов способны вызвать сбой в работе языковой модели с 13 млрд параметров. Таким образом, для появления багов достаточно «отравить» всего 0,00016% обучающего корпуса.

продолжить чтение

Проверка на Data Poisoning в MLSecOps

В первой обзорной статье на Хабре про MLSecOps мы сформировали общее понимание этого нового направления в IT, узнали про основные навыки, необходимые инженерам и архитекторам MLSecOps для успешной работы, подсветили яркое будущее и перспективы этой профессии.Cсылка на статью: MLSecOps: защита машинного обучения в эпоху киберугроз Давайте сегодня погрузимся в практику и разберем один из наиболее часто задаваемых мне вопросов: «Как защищаться от отравления данных? Как проверять данные на Data Poisoning»?

продолжить чтение

Rambler's Top100