Собираем качественные датасеты для LLM с помощью Telegram-бота
«Дайте мне качественный датасет, и я переверну Землю!» — возможно, так перефразировал бы свою крылатую фразу Архимед, доведись ему тренировать современные LLM. Хороших наборов данных в открытом доступе не так много, а собрать свой — задача не из простых. О популярных способах сбора данных для датасетов, связанных с этим рисках и о решении, которое мы используем в YADRO, сегодня и поговорим. Меня зовут Антон Шадрин, я работаю в DevOps-команде дивизиона искусственного интеллекта YADRO. В работе с моделями искусственного интеллекта, как и в CI/CD-пайплайне, есть похожий набор шагов.
200 000+ снимков мусора: что мы узнали о датасетах
В нашей работе хватает безумных задач. Мы создали первого в России цифрового PR-менеджера, разрабатывали виртуальную примерочную и делали много чего еще, о чем не всегда можно рассказать. Но когда мы взялись за создание ИИ-сортировщика мусора MARQUS, поняли — будет совсем жестко.Не так давно мы создали систему сортировки ТКО (Твердых коммунальных отходов) MARQUS, которая делит отходы на бумагу, металл, пластик, стекло и т.д. Система использует искусственный интеллект и специальные сенсоры, чтобы распознавать различные типы отходов прямо на конвейере и направлять их в соответствующие секции для переработки.
Как мы научили нейросеть узнавать 10 000 лошадей «в лицо» и чуть не сошли с ума
В нашей работе хватает безумных задач. Мы собирали датасеты с уличными драками, где сами вживались в роль дебоширов перед камерами, и делали много чего еще, о чем не всегда можно рассказать. В общем, мы в своей работе привыкли к странным задачам. Но когда к нам пришли с просьбой научить искусственный интеллект узнавать «в лицо» 10 000 лошадей, мы поняли — будет интересно... Здесь было все: почти сорванный дедлайн, паника, отчаяние и, как вишенка на торте, нейросеть, которую мы создали, чтобы обучить другую нейросеть.Кони-авторитеты и спокойствие стада

