разметка датасета.

Garbage In — Garbage Out: ошибки в разметке данных и как они ломают ML-системы

На Хабре тысячи статей про OCR, IDP, ML и искусственный интеллект. Все они сходятся в одном: «качественная разметка данных — ключ к точности модели». Но что это значит на практике?Меня зовут Снежана Игнатенко, я руковожу отделом разметки данных в SL Soft AI

продолжить чтение

Как я собрал и подготовил датасет дефектов печатных плат для обучения моделей YOLO

Когда пришло время выбирать тему диплома, я, как и многие студенты, понятия не имел, о чём писать. После мозгового штурма с одногруппниками родилась идея, которая из простого «варианта для защиты» превратилась в полноценный инженерный проект: «исследование и разработка системы автоматического распознавания дефектов печатных плат». Со временем я понял, что выбрал тему не случайно - это реально актуальная задача для производства, где качество пайки напрямую влияет на работоспособность устройств, а ещё отличный шанс пройти весь цикл Computer Vision проекта от сбора данных до обучения моделей.

продолжить чтение

200 000+ снимков мусора: что мы узнали о датасетах

В нашей работе хватает безумных задач. Мы создали первого в России цифрового PR-менеджера, разрабатывали виртуальную примерочную и делали много чего еще, о чем не всегда можно рассказать. Но когда мы взялись за создание ИИ-сортировщика мусора MARQUS, поняли — будет совсем жестко.Не так давно мы создали систему сортировки ТКО (Твердых коммунальных отходов) MARQUS, которая делит отходы на бумагу, металл, пластик, стекло и т.д. Система использует искусственный интеллект и специальные сенсоры, чтобы распознавать различные типы отходов прямо на конвейере и направлять их в соответствующие секции для переработки.

продолжить чтение

Как мы научили нейросеть узнавать 10 000 лошадей «в лицо» и чуть не сошли с ума

В нашей работе хватает безумных задач. Мы собирали датасеты с уличными драками, где сами вживались в роль дебоширов перед камерами, и делали много чего еще, о чем не всегда можно рассказать. В общем, мы в своей работе привыкли к странным задачам. Но когда к нам пришли с просьбой научить искусственный интеллект узнавать «в лицо» 10 000 лошадей, мы поняли — будет интересно... Здесь было все: почти сорванный дедлайн, паника, отчаяние и, как вишенка на торте, нейросеть, которую мы создали, чтобы обучить другую нейросеть.Кони-авторитеты и спокойствие стада

продолжить чтение

Расставим точки над i: как подготовить разметку для задач Keypoint Detection

продолжить чтение

Менеджер данных: как новая роль изменила подход к работе с ML

Меня зовут Вера Романцова, я работаю в 2ГИС в команде компьютерного зрения. Мы создаём ML-модели и сервисы, которые автоматизируют работу с картами и данными. Но перед тем, как обучить модель и выкатить сервис, есть ещё много работы по сбору датасетов и разработке моделей. И обычно все эти задачи выполняли ML-инженеры. В один из моментов моя будущая команда пришла к выводу, что для эффективных процессов разметки, сбора и валидации данных нужна отдельная роль — менеджер данных. Этим первопроходцем в нашей компании стала я. В этой статье я расскажу:Кто такой менеджер данных и чем он занимается.

продолжить чтение

GigaChat + RAG: как гига нам инструкции для разметки пишет в 3 раза быстрее

Почти за всем хорошим ML стоят хорошие данные. И так получилось, что таких данных часто нет и их приходится добывать, а даже добыв, из них нужно сделать что-то подходящее, и (если сильно огрубить) такой процесс называется разметкой.Пример задачи по сегментации видео-кадров и пример инструкции к ней

продолжить чтение

Rambler's Top100