Как мы обеспечили +33% к точности на сложных SQL-запросах
Генератор SQL на базе LLM — понятный продукт с понятной ценностью. Он может быть отдельной платформой или инструментом для агента, решающего более общую задачу. Генерировать код модели с попеременным успехом, к счастью, умеют. И что же? Берем API с моделью помощнее, даем ей доступ к БД, задаем вопрос, смотрим на результат, и всё — полноценная замена аналитику? Конечно, нет, ведь аналитик делает гораздо больше, чем просто пишет и исполняет SQL. Однако давайте остановимся на SQL и посмотрим, почему это тоже не так просто:
Квантованные БМ сети: упрощаем типы данных
Как вы уже видели, регулярно читая наш блок, мы не только занимаемся разработкой промышленных систем распознавания документов (паспортов, кадрового документооборота, первички и т.п.), но и активно развиваем перспективные технологии в области компьютерного зрения. Сегодняшняя статья из области эффективных нейросетевых архитектур.Биполярные морфологические (БМ) сети – нейронные сети от Smart Engines
Внедрение LLM в разработку ПО: стоит ли?
Привет, на связи Юлия Рогозина, аналитик бизнес-процессов Шерпа Роботикс. Сегодня я перевела для вас статью, тема которой касается именно использования Large Language Models (LLM) как части вашего продукта, а не использования ИИ как инструмента в процессе разработки (например, таких инструментов, как Cursor или Zed AI).
Что побуждает LLM врать и как этого избежать в своих продуктах
Одна из основных проблем использования больших языковых моделей (LLM) в бизнесе заключается в том, что LLM склонны к галлюцинациям. Как можно доверить своих клиентов чат-боту, который может слететь с катушек и в любой момент сказать что-то неуместное? Или как можно доверять корпоративному AI-ассистенту, если он рандомно придумывает факты?

