Топ вопросов с Data Science собеседований: Деревья и ансамбли, кластеризация, метрические модели
Знание классики - база любых собеседований на все грейды в DS!Этот материал не рассчитан на изучение тем с нуля. Это чеклист и тренажёр, по которому стоит пройтись перед техническим интервью по классическому ML. Кратко, по делу, с акцентом на то, что действительно спрашивают.Это вторая часть вопросов по classic ML, если вы не видели первую, то обязательно читайте (там разобрал основы мл, линейные модели, метрики классификации и регресии).А в этой части разберем:деревьяансамблиметрические моделикластеризацию
Топ вопросов с Data Science собеседований: Основы Classic ML, Линейные модели, Метрики классификации и регрессии
Секрет успешного трудоустройства — в дотошной подготовке к собеседованиям!Этот материал не рассчитан на изучение тем с нуля. Это чеклист и тренажёр, по которому стоит пройтись перед техническим интервью по классическому ML. Кратко, по делу, с акцентом на то, что действительно спрашивают.В этой части разберем:основы машинного обучения,переобучение и кросс-валидация,линейные модели,метрики классификации и регрессии.Параллельно доступно видеоинтервью с разбором тех же вопросов

