fastapi.

Как мы создаём HD-карты для автономного транспорта: устройство map-editor

продолжить чтение

Prompt Caching в Claude: Как мы снизили затраты на AI в 2 раза

Prompt Caching в Claude: Как мы снизили затраты на AI в 2 разаКейс по оптимизации затрат на Claude API в проекте по автоматизации поиска работы. AI анализировал вакансии и генерировал сопроводительные письма. При 100 пользователях затраты достигали $180/месяц. Решение: Prompt Caching от Anthropic. Экономия 52% ($0.51 → $0.245 за batch из 50 вакансий). Теперь можно делать в 2 раза больше AI-вызовов с тем же бюджетом.Кому полезно: всем, кто работает с LLM API и хочет оптимизировать затраты.История: Когда AI начал съедать бюджет

продолжить чтение

Адский эксперимент: личный сайт на нищих микросервисах

Микросервисы тут, микросервисы там… Из каждого утюга доносится дивный сказ про прекрасный мир микросервисов. А ведь это всего лишь один вид из десятка архитектурных стилей, который имеет свои достоинства и недостатки.

продолжить чтение

SmileFace. Когда нейросеть улыбается тебе в ответ

Исходники открыты на GitHub: github.com/konstantinkozhin/SmileFaceОт идеи до смеха в коридореКо Дню программиста в университете нужно было сделать интерактивный стенд — что-то весёлое, но с технологическим смыслом. Квиз или чат-бот казались скучными, хотелось чего-то с человеческим лицом — буквально.Я вспомнил о библиотеках, которые умеют распознавать эмоции по видео, и подумал: а что, если превратить это в игру?Так появилась идея SmileFace

продолжить чтение

Как я сделал LLM-сервис, который понимает буровые сводки

Привет! Меня зовут Стас, я занимаюсь R&D в компании ROGII.Я пришёл в ROGII после нескольких лет работы «в поле» — от тундры Уренгойских месторождений до Сахалина. Там я понял, что буровые данные живут в хаосе: у каждого вендора — свой формат, у каждой скважины — свой стиль отчёта.Когда я оказался в компании, которая консолидирует буровые данные в облаке, задача встала ребром: нужно научить машину понимать суточные рапорты так же, как это делает инженер.Мы собрали 507 PDF‑файлов (всего 14 678 страниц) и выделили 23 типа отчётов по признаку компании и структуры.

продолжить чтение

ReVu — Open Source AI-ревьюер для ваших Pull Request

Всем привет!Недавно мы с приятелем обсуждали, как устроены рабочие процессы в бигтех-компаниях и какую роль в них уже играет ИИ. Речь в основном шла о зарубежных компаниях — у него там есть знакомые, которые делились опытом изнутри. Один из самых любопытных моментов — использование искусственного интеллекта для предварительного код-ревью в Pull Request: прежде чем коллеги возьмутся проверять изменения, PR уже анализирует ИИ и указывает на потенциальные проблемы.

продолжить чтение

Автоматизация A-B-экспериментирования

Я сейчас работаю над автоматизированной системой A/B-экспериментирования заголовков и/или обложек статей и новостей на одной медиа-платформе в одиночку. Решил рассказать вам, как эта система работает и показать некоторые технические нюансы. Сразу оговорюсь, что название и сферу упоминать не стану, система находится в разработке, но есть, что рассказать.Немного об экспериментах

продолжить чтение

Автоматизированное машинное обучение с помощью нашего Open Source фреймворка: задача о Титанике

Привет! Меня зовут Владимир Суворов, я Senior Data Scientist в Страховом Доме ВСК и core-разработчик нашей библиотеки машинного обучения OutBoxML.

продолжить чтение

Самые популярные Python фреймворки и библиотеки 2025 года

Команда Python for Devs подготовила перевод статьи о самых популярных Python-фреймворках и библиотеках 2025 года. FastAPI уверенно догоняет Django и Flask, Requests и Asyncio остаются незаменимыми, а Streamlit и Starlette усиливают свои позиции в нишевых сценариях.Создаёте ли вы API, дашборды или пайплайны для машинного обучения — выбор подходящего фреймворка может определить успех или провал проекта.Каждый год мы опрашиваем тысячи Python-разработчиков, чтобы показать, как развивается экосистема: от инструментов и языков до фреймворков и библиотек. Наши данные из отчёта State of Python 2025

продолжить чтение

Библиотека OutboxML от Страхового Дома ВСК

Хабр, привет! Меня зовут Семён Семёнов, я руковожу Data Science и Machine Learning в Страховом Доме ВСК. В этой статье расскажу, как мы создали систему автоматического обучения и развёртывания моделей машинного обучения с открытым исходным кодом.

продолжить чтение

12
Rambler's Top100