eda.
Руководство по PyTorch для новичков: создаём модель множественной регрессии с нуля
TL;DRАвтор берёт датасет Abalone и проводит подробный EDA: проверяет распределения, выбросы, мультиколлинеарность и видит выраженную гетероскедастичность целевой переменной.Строится базовая линейная регрессия (c лог-преобразованием целевой), фильтруются выбросы, добавляются полиномиальные признаки — качество улучшается, но упирается в ограничения самой постановки.Далее реализуется полносвязная нейросеть в PyTorch с подбором гиперпараметров, обучением на mini-batch и валидацией по RMSE.
Разведочный анализ текстовых данных (EDA for text data)
Во время работы с данными важно понять, что они собой представляют. Не всегда на первый взгляд можно понять их структуру, свойства и особенности. В частности, это касается и текстовых данных, которые сами по себе не имеют четкой структуры. В этой статье мы рассмотрим этапы анализа текстовых данных, а также подходы при работе с датасетами для таких популярных задач NLP, как классификация и NER/POS. В качестве основных инструментов будут использоваться Python и Jupyter Notebook. СодержаниеПервичный анализ датасетаДубликаты и пропуски
Titanic + CatBoost (Первое решение, первый Jupyter Notebook)
#Импортируем все необходимые библиотеки import pandas as pd from catboost import CatBoostClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt import seaborn as sns import json # 🔕 Отключаем предупреждения, чтобы не загромождали вывод import warnings warnings.filterwarnings('ignore')
Разведочный анализ данных (EDA) через тематическое моделирование и мягкую кластеризацию
Привет! Меня зовут Соня Асанина, я работаю в команде Центра технологий искусственного интеллекта Газпромбанка. В этой статье я расскажу, как тематическое моделирование и мягкая кластеризация помогают нам извлекать ценные инсайты из клиентских отзывов.Каждый день мы получаем тысячи отзывов от клиентов. В каждом есть информация, которая помогает выявлять проблемы и дает понимание, как улучшать продукты и сервисы. Но часто очень сложно извлечь эти инсайты из огромного потока неструктурированных данных.
Автоматизация разведочного анализа данных (EDA) с помощью Python
Всем привет! Меня зовут Константин Некрасов, я работаю дата-сайентистом в Газпромбанке. Хочу рассказать про инструмент, который серьезно упростил мою повседневную работу с данными, и поделиться им.Если вы когда-нибудь занимались машинным обучением, то знаете — перед тем как строить модель, нужно как следует изучить свои данные. Этот этап называется EDA (Exploratory Data Analysis), или разведочный анализ данных (РАД). Он критически важен — именно здесь мы находим скрытые закономерности, выдвигаем первые гипотезы и понимаем, как лучше обработать данные для будущей модели.

