Оптимизация Trellis: запускаем генерацию 3D моделей на GPU с 8ГБ памяти
Привет, Хабр! Я оптимизировал Trellis — мощный AI-инструмент для генерации 3D моделей из изображений, и хочу поделиться тем, как удалось снизить требования к видеопамяти с 16GB до 8GB, сохранив качество генерации.Что такое Trellis и почему это важноTrellis — модель для генерации 3D-ассетов, разработанная Microsoft Research, способная создавать трёхмерные объекты из изображений. Её ключевая особенность — универсальный Structured LATent (SLAT) формат, за счет которого можно генерировать различные выходные форматы: от Radiance Fields и 3D Gaussians до полноценных мешей.
Анализ обработки признаков в YOLO NAS S при помощи CAM
Методы объяснения моделей — практичный инструмент для понимания модели, оценки её точности и стабильности. Однако, часто можно столкнуться с ситуацией, когда фреймворк, в котором метод реализован, просто не "дружит" с реализацией модели. В этом туториале хочу подробно показать CAM (class activation map) для объяснения моделей зрения. Почему CAM?Class Activation Maps (CAM) — базовый инструмент для визуализации того, какие области изображения наиболее важны для модели при принятии решения. Он позволяет понять:Какие признаки извлекает модель на разных слоях свертки;
GAN и диффузионные модели: как научить нейросеть рисовать
Привет! Сегодня хочу поговорить о двух очень горячих темах в области искусственного интеллекта — генеративно‑состязательные сети (GAN) и диффузионные модели (типа Stable Diffusion). Я сама как‑то подсела на все эти AI‑картинки и поняла, что нужно срочно поделиться тем что накопала. Поехали!:‑)GAN: Генератор vs. Дискриминатор
Пишем свой PyTorch на NumPy. Финал. Запускаем GPT-2
PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей. Для использования этого фреймворка, часто достаточно поверхностно понимать работу алгоритмов машинного обучения.
Пишем свой PyTorch на NumPy. Часть 3. Строим граф вычислений
PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей. Для использования этого фреймворка, часто достаточно поверхностно понимать работу алгоритмов машинного обучения.