PyTorch.

Оптимизация Trellis: запускаем генерацию 3D моделей на GPU с 8ГБ памяти

Привет, Хабр! Я оптимизировал Trellis — мощный AI-инструмент для генерации 3D моделей из изображений, и хочу поделиться тем, как удалось снизить требования к видеопамяти с 16GB до 8GB, сохранив качество генерации.Что такое Trellis и почему это важноTrellis — модель для генерации 3D-ассетов, разработанная Microsoft Research, способная создавать трёхмерные объекты из изображений. Её ключевая особенность — универсальный Structured LATent (SLAT) формат, за счет которого можно генерировать различные выходные форматы: от Radiance Fields и 3D Gaussians до полноценных мешей.

продолжить чтение

Анализ обработки признаков в YOLO NAS S при помощи CAM

Методы объяснения моделей — практичный инструмент для понимания модели, оценки её точности и стабильности. Однако, часто можно столкнуться с ситуацией, когда фреймворк, в котором метод реализован, просто не "дружит" с реализацией модели. В этом туториале хочу подробно показать CAM (class activation map) для объяснения моделей зрения. Почему CAM?Class Activation Maps (CAM) — базовый инструмент для визуализации того, какие области изображения наиболее важны для модели при принятии решения. Он позволяет понять:Какие признаки извлекает модель на разных слоях свертки;

продолжить чтение

GAN и диффузионные модели: как научить нейросеть рисовать

Привет! Сегодня хочу поговорить о двух очень горячих темах в области искусственного интеллекта — генеративно‑состязательные сети (GAN) и диффузионные модели (типа Stable Diffusion). Я сама как‑то подсела на все эти AI‑картинки и поняла, что нужно срочно поделиться тем что накопала. Поехали!:‑)GAN: Генератор vs. Дискриминатор

продолжить чтение

Пишем свой PyTorch на NumPy. Финал. Запускаем GPT-2

PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей. Для использования этого фреймворка, часто достаточно поверхностно понимать работу алгоритмов машинного обучения.

продолжить чтение

Пишем свой PyTorch на NumPy. Часть 3. Строим граф вычислений

PyTorch — это мощный и гибкий фреймворк для машинного обучения, широко используемый для создания нейронных сетей. Он особенно популярен благодаря простоте использования, динамическим вычислительным графам и богатой экосистеме инструментов для обучения моделей. Для использования этого фреймворка, часто достаточно поверхностно понимать работу алгоритмов машинного обучения.

продолжить чтение

Rambler's Top100